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Overview

B Last lecture we got to know latent distance models (as third example for
latent feature models) which make the probability of the existence of a
relation between two entities dependent on the distance of their latent
representation.

B We then learned about graph feature models which explain the existence of
triples from features directly observed in the KG.

B Today we will see, in the first part, how latent and graph feature models can
be combined.

B In the second part we will learn some general aspects about model training
that are specific for knowledge graph analysis.
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Latent feature and graph feature models

B The strengths of latent feature and graph feature models are complementary,
as both families focus on different aspects of relational data.

B Latent feature models are

• well-suited for modeling global relational patterns via newly
introduced latent variables.

• computationally efficient if triples can be explained with a small number
of latent variables.

B Graph feature models are

• well-suited for modeling local and quasi-local graph patters.
• computationally efficient if triples can be explained from the

neighborhood of entities or short paths in the graph.

⇒ Idea: Combine latent and graph feature models!
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Additive relational effects (ARE) model 1

B Idea: Combine RESCAL with PRA.

B The score function gets

f RESCAL+PRA
ijk = r (1)Tk xRESCAL + r (2)Tk xPRA

where xRESCAL = e i ⊗ e j and xPRA = [P(π) : π ∈ Πei ,ej ].

B Can be trained by alternately optimizing RESCAL and PRA parameters.

B RESCAL only needs to model ”residual errors” which can not be modeled by
observable graph patterns.

B This allows for latent variables with lower dimensionality.

1Nickels et al. Reducing the Rank in Relational Factorization Models by Including
Observable Patterns, NIPS 1014
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Additive models

B Other additive models2 combine latent feature models with an additive term
to learn from latent and neighborhood based information:

f ADD
ijk = r (1)Tk,j xSUB

i + r (2)Tk,i xOBJ
j + r (3)Tk xN

ijk

where

• xSUB
i is the latent representation of the ith entity as a subject.

• xOBJ
j is the latent representation of the jth entity as an object.

• xN
ijk = [yijk′ : k ′ 6= k] is for capturing patterns where the existence of

some other triple yijk′ is predictive for the triple of interest.

2Jiang et al. Link Prediction in Multi-relational Graphs using Additive Models. CEUR
Workshop Proceedings, 2012
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Stacking: a general way to combine models

B Stacking3 (sometimes called stacked generalization) corresponds to training
a learning algorithm to combine the predictions of several other learning
algorithms.

B First, some algorithms are trained on the data, then a combiner algorithm is
trained to make a final prediction using the predictions of the other
algorithms as (additional) inputs.

B E.g. train a binary classifier on the scalar output of PRA and the ER-MLP.

B Advantage: Flexibility in the kind of models that can be combined.

B Disadvantage: Individual models cannot cooperate, and thus need to be
more complex than in combined models.

B E.g. When stacking based on RESCAL and PRA one will need more latent
features than for joint training.

3Wolpert, Stacked generalization. Neural networks, 1992.
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Training SRL models on KGs

Up until know we learned about different kind of models

B Latent feature models (based on tensor factorization, neural networks or
distance minimization)

B Graph feature models (based on neighborhood or path/random walk
information)

B Combinations of both.

B Markov logic networks.

What else do we need to know for training the models?

B Where do the negative examples come from?

B Which loss-functions to take?

B How to perform model selection?

B How to evaluate the performance of a model?
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Open vs. closed world assumption

B Existing triples always encode known true relationships (facts), but there
different interpretations of non-existing triples.

B Under the closed world assumption (CWA) non-existing triples indicate
false relationships.

B Under the open world assumption (OWA) non-existing triple are
interpreted as unknown, i.e., the corresponding relationship can be either
true or false.

B The open world assumption fits the fact that KGs are known to be very
incomplete.

B E.g., even the place of birth attribute is missing for 71% of all people
included in Freebase.
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Ways to get negative examples

B Training is based on a set D of training examples (xn, yn), n = 1, 2, . . . ,
where xn is a triple and yn ∈ {0, 1} indicates if the triple is true or false.

B It is easy to get positive training examples corresponding to true facts.

B Lets D+ = {xn ∈ D|yn = 1} denote the set of observed true triples.

B Training only on D+ is tricky and can lead to over generalization.

B Where do negative examples (corresponding to false facts) come from?

B Under the closed world assumption all triples xn /∈ D+ are false.

B However, for incomplete KGs the assumption is violated.

B Moreover, D− = {xn ∈ D|yn = 0} might be very large which can lead to
scalability issues.
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Getting negative examples by exploiting constraints

B Alternative approach: exploit known constraints on KG structure, such as

• type constraints for predicates
(e.g., persons are only married to persons)

• valid attribute ranges for predicates
(e.g., the height of humans is below 3 meters)

• functional constrains such as mutual exclusion
(e.g., a person is born exactly in one city).

B It is guaranteed that examples violating such hard constrains are indeed
negative examples.

B But, functional constraints are scarce and negative examples based on type
constraints and valid attribute ranges usually not sufficient to train useful
models.
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Getting negative examples by perturbing true triples

B Better approach: Generate examples by ”perturbing” true triples, i.e., by
replacing subject or object in true triples.

B We get

D− = {(el , rk , ej)|el 6= ei ∧ (ei , rk , ej) ∈ D+}
∩ {(ei , rk , el)|el 6= ej ∧ (ei , rk , ej) ∈ D+}

B This leads to a smaller D− and to more plausible negatives than based on
the closed world assumption.
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Getting negative examples by perturbing true triples

B Close world assumption would generate

• good negative examples such as
(LeonardNimoy, starredIn, StarWars),(AlecGuinness, starredIn,
StarTrek).

• type-consistent but irrelevant negative triples such as
(BarackObama, starredIn, StarTrek).

B The letter would not be generated by perturbation based generation, since
there exist no triples (BarackObama, starredIn, ·).
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Getting negative examples from local CWA

B Local-closed world assumption: assume that a KG is only locally complete.

B If one has observed any triple for a subject-predicate pair ei , rk , assume that
any non-existing triple (ei , rk , ·) is indeed false and include it in D−.

B This assumption is valid for functional relations, such as bornIn, but not for
set-valued relations, such as starredIn.

B If we have not observed any triple at all for the pair ei , rk , assume that all
triples (ei , rk , ·) are unknown and not include them in D−.
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Getting negative examples from text extraction

B One can also make use of the candidate triples generated by text extraction
methods run on the Web.

B Many of these triples will be false, due to extraction errors, but define a
good set of plausible negatives.

B This technique is for example used in the Knowledge Vault project.
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Recall: Probabilistic models for SRL

B Idea: model the knowledge graph by a joint probability distribution P(Y ).

B Let D be the set of all observed triples and Ne and Nr be the numbers of
entities and relations respectively. Assuming that all yijk are independent of
each other given a set of parameters Θ we can write

P(Y |D,θ) =
N∏

n=1

Ber
(
yn|σ

(
f (xn;θ)

))
with σ = 1/(1 + e−u) and

Ber(y |p) =

{
p if y = 1

1− p if y = 0
.

B How can we train such a model?
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Recapitulation: Maximum Likelihood Estimate

B Let x1, . . . , xN be i.i.d samples drawn from an unknown probability
distribution P0.

B We assume that P0 belongs to a certain family of distributions P(·|θ) with
parameters θ ∈ Θ, i.e., P0(·) = p(·|θ0) for unknown parameters θ0.

B How can we find an estimate θ̂ which is as close to θ0 as possible?

B Let us first note that (because of the independence of the samples) the joint
probability distribution is given by

P(x1, . . . , xN |θ) =
N∏

n=1

P(xn|θ)
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Recapitulation: Maximum Likelihood Estimate

B Lets change the perspective: Consider the samples x1, . . . , xN as fixed, and
let θ be the function variables.

B This function is called the likelihood

L(θ; x1, . . . , xN) = P(x1, . . . , xN |θ) =
N∏

n=1

P(xn|θ) .

B The method of maximum likelihood estimates θ0 by finding the
parameters that maximize L(θ; x1, . . . , xN).

B Thus the maximum likelihood estimate is given by

θ̂MLE = arg max
θ
L(θ; x1, . . . , xN) .

Dr. Asja Fischer, Prof. Jens Lehmann Training SRL Models 17



Recapitulation: Maximum Likelihood Estimate

B In practice its often more convenient to work with the log-likelihood

logL(θ; x1, . . . , xN) = logP(x1, . . . , xN |θ) =
N∑

n=1

logP(xn|θ) .

B This does not change the maximum likelihood estimate, since the logarithm
is a monotone increasing function and thus

θ̂MLE = arg max
θ
L(θ; x1, . . . , xN) = arg max

θ
logL(θ; x1, . . . , xN) .
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Maximum likelihood learning for SRL models

B Lets look again at the probabilistic SRL model

P(Y |D,θ) =
N∏

n=1

Ber
(
yn|σ

(
f (xn;θ)

))
.

B The maximum likelihood estimate is given by

θ̂MLE = arg max
θ

N∑
n=1

log Ber
(
yn|σ

(
f (xn;θ)

))
.

B They can for example be found by performing stochastic gradient ascent on
the (log-)likelihood.

B The negative (log-)likelihood defines a loss-function for probabilistic models.

B Depending on f (xn;θ) there might be several (local) optima.
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Maximum likelihood learning for SRL models

B We can write

θ̂MLE = arg max
θ

N∑
n=1

log Ber
(
yn|σ

(
f (xn;θ)

))
= arg max

θ

N∑
n=1

yn log σ(f (xn,θ)) + (1− yn) log(1− σ(f (xn,θ)) .

B Recall, that we have seen this before for the example of RESCAL

arg max
A,R

∑
ijk

yijk log σ(aiR:,:,kaT
j ) + (1− yijk) log(1− σ(aiR:,:,kaT

j )) ,

where xijk = 1 if triple (ei , rk , ej) exists and xijk = 0 otherwise.
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Recapitulation: Maximum a-posteriori estimate

B But what if we have some prior knowledge about the parameters?

B In Bayesian ML we use the Bayes rule to infer model parameters θ from the
data D = {x1, . . . , xN} by

P(θ|D) =
P(D|θ)P(θ)

P(D)
.

where

• P(θ|D) is called the posterior.
• P(D|θ) is called the likelihood.
• P(θ) is called the prior.
• and P(D) is the probability of observing the data which we can not

compute.
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Recapitulation: Maximum a-posteriori estimate

B Since P(D) is the same for all models, we can equivalently write

P(θ|D) ∝ P(D|θ)P(θ) .

B The maximum a-posteriori estimate (MAP) is given by

θ̂MAP = arg max
θ

P(θ|D)

= arg max
θ

P(D|θ)P(θ)

= arg max
θ

logP(D|θ) + logP(θ) .

B With a uniform prior P(θ) it is the same as the maximum likelihood
estimate.
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Maximum a-posteriori for SRL models

B The MAP estimate for the probabilistic SRL model is given by

θ̂MLE = arg max
θ

N∑
n=1

log Ber
(
yn|σ

(
f (xn;θ)

))
+ logP(θ) .

B The prior can also be interpreted as a regularization term (for including
additional information to prevent overfitting).

B With L(f (xn;θ), yn) = −Ber
(
yn|σ

(
f (xn;θ)

))
we can state this as

regularized loss minimization problem

arg min
θ
L(f (xn;θ), yn) + λreg(θ)

where λ depends on the prior.
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Squared loss and mean squared error

B For score-based models there exists a variety of other loss functions.

B The squared loss (as mean over training examples also referred to as mean
squared error (MSE)) is given by

(fijk − yijk)2 .

B Recall, that based on this the (regularized) minimization problem for
RESCAL becomes

arg min
A,R
||T −R×1 A×2 A||2F + λA||A||2 + λR ||FR||2F ,

where || · ||F is the Frobenius norm (the tensor/matrix variant of the
Euclidean norm).

B This is build on the closed world assumption

B and can be minimized by alternating least squares (ALS).
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Logistic Loss

B Another example of an loss function that can be used under the closed
word assumption is the logistic loss.

B In this case one assumes that yi ∈ {−1,+1}.
B The regularized loss minimization problem with logistic loss is then given by

arg min
θ

N∑
n=1

log(1 + exp(−yi , f (xi : θ)) + λ||θ||2 .
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Pairwise loss function

B In the case of an open world assumption in which generated negative
samples are not guaranteed to be really negative, it can make more sense to
use a pairwise loss function.

B General idea: Encourage larger score function values for positive samples
from D+ than for negative samples from D−:

arg min
θ

∑
x+∈D+

∑
x+∈D−

L(f (x+,θ), f (x−,θ)) + λreg(θ) ,

where L is a margin based ranking loss function such as

L(f (x+,θ), f (x−,θ)) = max(0, γ + f (x−,θ)− f (x+,θ)) .
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Model selection

B Remember, that training success of a lot of models depends on choosing
good values for regularization parameters and other hyper parameters, like

• the dimension of latent features (all latent distance models)
• the dimension of the hidden layer (all MLP based models)
• the length of relation paths (for PRA)
• etc.

B The choice should be made based on cross validation or on the performance
on a separate validation set.
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Evaluation Criteria

B For a specific relation link prediction can be seen as binary classification of
entity pairs (does link between entities exist or not).

B Let us consider a binary classification problem in which outcomes are either
positive (e.g. ”link exists”) or negative (e.g. ”link does not exist”) .

B For a binary classifier there exist four different outcomes:

• true positive: actual label is positive and prediction is positive.
• false positive: actual label is negative but prediction is positive.
• true negative: actual label is negative and prediction is negative.
• false negative: actual label is positive but prediction is negative.
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True/false positive rate

B True positive rate (TPR) (also known as sensitivity or recall):
“probability of detection”.

#true positive

#samples with positive label

B False positive rate (FPR) (also known as fall-out):
“probability of false alarm”

#false positive

#samples with negative label
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Receiver operating characteristic (ROC) curve

B In binary classification, the class prediction for each instance is often made
based on a score (e.g. fijk).

B Given a threshold parameter T the instances (e.g. (ei , rk , ej)) are classified as
positive if the score is larger than T (e.g. fijk > T ) and negative otherwise.

B The TPR and FPR vary with T , which can be indicated by writing TPR(T )
and FPR(T ).

B The ROC curve is produced by plotting TPR(T ) on y-axis against FPR(T )
on x-axis.
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Area under the curve (AUC)

B If one randomly picks a negative and a positive example from, one wants the
score to be higher for the positive than the negative example.

B The area under the ROC curve (ROC-AUC) is the percentage of
randomly drawn pairs for which this is true.

B Under some additional assumptions it corresponds to the probability that the
the classifier will rank a randomly chosen positive sample higher than a
randomly chosen negative sample.

B The AUC can for example be numerically estimated based on constructing
trapeziods under the curve as an approximation of the area.
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Precision and recall

B Precision:

#true positive

#samples classified as positive

=
#true positive

#true positive + false positive

B Recall:

#true positive

#samples with positive label

=
#true positive

#true positive + false negatives
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Area under precision-recall curve

B The precision-recall curve is produced by plotting precision (in dependence
on T) on y-axis against recall (in dependence on T) on x-axis.

B As before, the area under the precision-recall curve (AUC-PR) is good
evaluation criterion.

B It has been shown that for data with a large number of negative examples
(as its typical the case for KGs) the AUC-PR can give a clearer picture of an
algorithms performance than the AUC-ROC.4

4Davis and Goadrich.The relationship between precision-recall and ROC curves. ICML. 2006.
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Mean reciprocal rank

B Recall the task of entity resolution: The problem of identifying which
objects in relational data refer to same underlying entities.

B Assume a SRL system that given an entity returns scores for a set of
candidate entities which could refer to the same object (as higher the score
as higher the likeliness of referring to the same object).

B E.g. a system returning the entities corresponding to the k-nearest neighbors
of the query entity in latent space and the distances as scores.

B Then the entities are ordered by decreasing score (i.e. the lower the score the
higher the rank).

B The mean reciprocal rank (MRR) is given by the average of the reciprocal
ranks of the correct results

MRR =
1

n

n∑
i=1

1

ranki

where n is the number of query entities where candidates are estimated for.
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Mean reciprocal rank - example

B For the query entity A. Guenniss the system returns to candidates: Alec
Guinniss and Arthur Guinness.

B If Alec Guinniss has a higher score than Arthur Guinness the reciprocal rank
is 1.

B If it is the other way around the reciprocal rank is 1
2 .

Dr. Asja Fischer, Prof. Jens Lehmann Training SRL Models 35



Summary

B Latent feature models (good in modeling global relational patters) and graph
feature models (good in modeling (quasi-)local graph patterns) can be
combined, e.g. the ARE model combines RESCAL with PRA.

B Stacking corresponds to training a learning algorithm to combine the
predictions of other learning algorithms.

B Negative training examples can be generated by exploiting known constraints
or the local CWA, by perturbing true triples, or using negative examples
resulting from text extraction methods.

B The maximum likelihood and the maximum a-posteriori principle can be
used to train probabilistic models.

B Score-based models building on the CWA can use the mean squared error or
the logistic loss for training.

B Score-based models building on the OWA can use a pairwise margin based
ranking loss.

B The AUC-ROC and the AUC-PR are good evaluation criteria for link
prediction models.

B The mean reciprocal rank a good option for entity resolution models.
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