MA-INF 4223-Lab Distributed Big Data Analytics

Spark Fundamentals II

Dr. Hajira Jabeen, Gezim Sejdiu, Prof. Dr. Jens Lehmann

09/05/2017
After completing this lesson, you should be able to:

- Understand and use various Spark Libraries
 - Spark SQL
 - Spark GraphX - graph processing
A unified analytics stack
Overview

- Spark SQL: Relational Data Processing in Spark
- GraphX: A Resilient Distributed Graph System on Spark
Motivation

- Support relational processing both within Spark programs
- Provide high performance with established DBMS techniques
- Easily support new data sources, including semi-structured data and external databases amenable to query federation
- Enable extension with advanced analytics algorithms such as graph processing and machine learning
Motivation

- Users:
 - Want to perform ETL-relational data Frames
 - Analytics - procedural tasks
 - UDFs
Spark SQL

- A module that integrates relational processing with Spark’s Functional programming API
- SQL allows relational processing
- Perform complex analytics
 - Integration between relational and procedural processing through declarative Data Frame
 - Optimizer (catalyst)
 - Composable rules
 - Control code generation
 - Extension points
 - Schema inference for json
 - ML types
 - Query federation
○ DataFrames are collections of structured records that can be manipulated using Spark’s procedural API,
○ Supports relational APIs that allow richer optimizations.
○ Created directly from Spark’s built-in distributed collections of Java/Python objects,
○ Enables relational processing in existing Spark Programs
○ DataFrame operations in SparkSQL go through a relational optimizer, Catalyst
Catalyst

- Catalyst is the first production quality query optimizer built on such functional language.
- It contains an extensible query optimizer.
- Catalyst uses features of the Scala programming language,
 - Pattern-matching,
 - Express composable rules
 - Turing complete language
Catalyst can also be extended with new data sources, semi-structured data, such as JSON, “smart” data stores to use push filters, e.g., HBase, user-defined functions; User-defined types for domains e.g. machine learning.

Spark SQL simultaneously makes Spark accessible to more users and improves optimizations.
Spark SQL

- JDBC
- Console
- User Programs (Java, Scala, Python)

- Spark SQL
- Dataframe API
- Catalyst Optimizer

- Spark
- Resilient Distributed Datasets
DataFrame

- DataFrame is a distributed collection of rows with the same schema like table in a relational database.
- Each DataFrame can also be viewed as an RDD of Row objects, allowing users to call procedural Spark APIs such as map.
- Spark DataFrames are lazy, in that each DataFrame object represents a logical plan to compute a dataset, but no execution occurs until the user calls a special “output operation” such as save.
Example

```java
ctx = new HiveContext()
users = ctx.table("users")
young = users.where(users("age") < 21)
println(young.count())
```
Data Model

- DataFrames support all common relational operators, including
 - projection (select),
 - filter (where),
 - join, and
 - aggregations (groupBy).
- Users can break up their code into Scala, Java or Python functions that pass DataFrames between them to build a logical plan, and will still benefit from optimizations across the whole plan when they run an output operation.
Optimization

- The API analyze logical plans eagerly
 - identify whether the column names used in expressions exist in the underlying tables,
 - whether the data types are appropriate
- Spark SQL allows users to construct DataFrames directly against RDDs of objects native to the programming language.
- Spark SQL can automatically infer the schema of these objects using reflection.
Optimization

◎ Uses **columnar cache**
 o reduce memory footprint by an order of magnitude because it applies columnar
 compression schemes such as dictionary encoding and run-length encoding.

◎ In Spark SQL, UDFs can be registered inline by passing Scala, Java or Python functions, which may use the full Spark API internally.
Easy to add new optimization techniques and features to Spark SQL

Enable external developers to extend the optimizer
 - E.g. adding data source specific rules that can push filtering or aggregation into external storage systems,
 - Support for new data types.

Catalyst supports both rule-based and cost-based optimizations
Catalyst

- Catalyst contains a general library for representing trees (Abstract Syntax Tree) and applying rules to manipulate them.
- Catalyst offers several public extension points, including external data sources and user-defined types.
Trees

- The main data type in Catalyst is a tree composed of node objects.
- Each node has a node type and zero or more children.
- New node types are defined in Scala as subclasses of the TreeNode class.
- These objects are immutable and can be manipulated using functional transformations.
Rules

- Trees can be manipulated using rules, which are functions from a tree to another tree.
- While a rule can run arbitrary code on its input tree (given that this tree is just a Scala object),
- the most common approach is to use a set of pattern matching functions that find and replace subtrees with a specific structure.
Catalyst’s general tree transformation framework works in four phases:
- analyzing a logical plan to resolve references
- logical plan optimization
- physical planning
- code generation to compile parts of the query to Java bytecode.
Spark GraphX

- Graph computation system which runs in the Spark data-parallel framework.
- GraphX extends Spark’s Resilient Distributed Dataset (RDD) abstraction to introduce the Resilient Distributed Graph (RDG)
Resilient Distribute Graph (RDG)

- A tabular representation of the efficient vertex-cut partitioning and data-parallel partitioning heuristics.
- Supports implementations of the
 - PowerGraph and
 - Pregel graph-parallel
- Preliminary performance comparisons between a popular data-parallel and graph-parallel frameworks running PageRank on a large real-world graph
Graph-parallel computation typically adopts a vertex (and occasionally edge) centric view of computation.

Retaining the data-parallel metaphor, program logic in the GraphX system defines transformations on graphs with each operation yielding a new graph.

The core data-structure in the GraphX systems is an immutable graph.
class Graph[V, E] {
 def vertices(): RDD[(Id, V)]

 def edges(): RDD[(Id, Id, E)]

 def filterVertices(f: (Id, V)=>Bool): Graph[V, E]

 def filterEdges(f: Edge[V, E]=>Bool): Graph[V, E]

 def mapVertices(f: (Id, V)=>(Id, V2)): Graph[V2, E]

 def mapEdges(
 f: (Id, Id, E)=>(Id, Id, E2)): Graph[V, E2]
(a) Edge-Cut

(b) Vertex-Cut
Encoding Property Graphs as RDDs

Property Graph

Vertex Table (RDD)

Routing Table (RDD)

Edge Table (RDD)
Edge Table

- EdgeTable(pid, src, dst, data): stores the adjacency structure and edge data.
- Each edge is represented as a tuple consisting of the:
 - source vertex id,
 - destination vertex id,
 - user-defined data
 - virtual partition identifier (pid).
Vertex Data Table

- VertexDataTable(id, data): stores the vertex data, in the form of a vertex (id, data) pairs.
- VertexMap(id, pid): provides a mapping from the id of a vertex to the ids of the virtual partitions that contain adjacent edges.
New API
Blurs the distinction between Tables and Graphs

New Library
Embeds Graph-Parallel model in Spark
Property Graph

Vertex Table

<table>
<thead>
<tr>
<th>Id</th>
<th>Attribute (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rxin</td>
<td>(Stu., Berk.)</td>
</tr>
<tr>
<td>Jegonzal</td>
<td>(PstDoc, Berk.)</td>
</tr>
<tr>
<td>Franklin</td>
<td>(Prof., Berk)</td>
</tr>
<tr>
<td>Istoica</td>
<td>(Prof., Berk)</td>
</tr>
</tbody>
</table>

Edge Table

<table>
<thead>
<tr>
<th>SrcId</th>
<th>DstId</th>
<th>Attribute (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rxin</td>
<td>jegonzal</td>
<td>Friend</td>
</tr>
<tr>
<td>franklin</td>
<td>rxin</td>
<td>Advisor</td>
</tr>
<tr>
<td>istoica</td>
<td>franklin</td>
<td>Coworker</td>
</tr>
<tr>
<td>franklin</td>
<td>jegonzal</td>
<td>PI</td>
</tr>
</tbody>
</table>
GraphX Optimizations

- Mirror Caches
- Incremental Updates to Mirror Caches
- Join Elimination
- Index Scanning for Active Sets
- Local Vertex and Edge Indices
- Index and Routing Table Reuse
They are extensions of the Spark core API (RDDs).

Transformations among these data representations
Spark SQL

Spark Core Engine

APIs & Libraries

Spark SQL & Data Frames
Spark Streaming
Real-time processing
MLlib
Machine Learning
GraphX
Graph processing

Deploy

Core

Local
Single JVM

Cluster
Standalone, Mesos, YARN

Containers
docker-compose
Spark SQL

- Spark SQL lets you query structured data inside Spark programs, using either SQL or a familiar DataFrame API.
- It has its own RDD called SchemaRDD consisting of:
 - **Row objects**
 - **Schema** - describe the type of the data in each column in the row
 - SchemaRDD can be created via:
 - Existing RDD, Parquet file, JSON dataset, HiveQL, Cassandra or other JDBC connectors.
- Is available in Scala, Java, Python, and R.
Starting point: **SparkSession**
- Created from `SparkSession.builder()`
- Existing contexts: `SQLContext/HiveContext`
 - Entry point for all SQL functionality

For implicit conversions like converting RDDs to DataFrames we have to use:

```
import spark.implicits._
```

Create an RDD of `Triple` objects from a `nt` file, convert it to a Dataframe

```scala
val tripleDF = spark.sparkContext
textFile("src/main/resources/rdf.nt")
.map(parsTriples)
toDF()
```
Register the DataFrame as a temporary view

```scala
tripleDF.createOrReplaceTempView("triple")
```

SQL statements can be run by using the sql methods provided by Spark

```scala
val authorDF = spark.sql("SELECT subject, object FROM triple WHERE predicate='http://commons.dbpedia.org/property/author'")
```

The columns of a row in the result can be accessed by field index

```scala
authorDF.map( author => "Author: " + author(0)).collect().foreach(println(_))
```
Spark GraphX

Core
- Spark Core Engine

Deploy
- Local: Single JVM
- Cluster: (Standalone, Mesos, YARN)
- Containers: docker-compose

APIs & Libraries
- Spark SQL & Data Frames
- Spark Streaming
- MLlib
- GraphX

GraphX
- Graph processing

Spark Core Engine
- Real-time processing
Spark GraphX

- Spark GraphX - stands for graph processing
 - For graph and graph-parallel computation
- At a high level, GraphX extends the Spark RDD by introducing a new Graph abstraction:
 - a directed multigraph with properties attached to each vertex and edge.
- It is based on Property Graph model $\rightarrow G(V, E)$
 - Vertex Property
 - Triple details
 - Edge Property
 - Relations
 - Weights
Creating a Graph

```scala
// Create an RDD for the vertices
val users: RDD[(VertexId, (String, String))] = spark.sparkContext.parallelize(
  Array((3L, ("sejdiu", "phd_student")),
        (2L, ("jabeen", "postdoc")),
        (1L, ("lehmann", "prof")),
        (4L, ("auer", "prof"))))

// Create an RDD for edges
val relationships: RDD[Edge[String]] = spark.sparkContext.parallelize(
  Array(Edge(3L, 2L, "collab"),
        Edge(1L, 3L, "advisor"),
        Edge(1L, 4L, "colleague"),
        Edge(2L, 1L, "pi"))

// Build the initial Graph
val graph = Graph(users, relationships)
```

Vertex RDD

<table>
<thead>
<tr>
<th>vID</th>
<th>Property(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1L</td>
<td>(lehmann, prof)</td>
</tr>
<tr>
<td>2L</td>
<td>(jabeen, postdoc)</td>
</tr>
<tr>
<td>3L</td>
<td>(sejdiu, phd_student)</td>
</tr>
<tr>
<td>4L</td>
<td>(auer, prof)</td>
</tr>
</tbody>
</table>

Edge RDD

<table>
<thead>
<tr>
<th>sID</th>
<th>dID</th>
<th>Property(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1L</td>
<td>3L</td>
<td>advisor</td>
</tr>
<tr>
<td>1L</td>
<td>4L</td>
<td>colleague</td>
</tr>
<tr>
<td>2L</td>
<td>1L</td>
<td>pi</td>
</tr>
<tr>
<td>3L</td>
<td>2L</td>
<td>collab</td>
</tr>
</tbody>
</table>
Graph Operators

/** Summary of the functionality in the property graph */
class Graph[VD, ED] {
 // Information about the Graph
 val numEdges: Long
 val numVertices: Long
 val inDegrees: VertexRDD[Int]
 val outDegrees: VertexRDD[Int]
 val degrees: VertexRDD[Int]
 // Views of the graph as collections
 val vertices: VertexRDD[VD]
 val edges: EdgeRDD[ED]
 val triplets: RDD[EdgeTriplet[VD, ED]]
 // Functions for caching graphs
 def persist(newLevel: StorageLevel = StorageLevel.MEMORY_ONLY): Graph[VD, ED]
 def cache(): Graph[VD, ED]
 def unpersistVertices(blocking: Boolean = true): Graph[VD, ED]
 // Change the partitioning heuristic
 def partitionBy(partitionStrategy: PartitionStrategy): Graph[VD, ED]
 // Transform vertex and edge attributes
 def mapVertices[VD2](map: (VertexId, VD) => VD2): Graph[VD2, ED]
 def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]

Spark GraphX

Build-in Graph Algorithms

// Basic graph algorithms
==

```scala
def pageRank(tol: Double, resetProb: Double = 0.15): Graph[Double, Double]
def connectedComponents(): Graph[VertexId, ED]
def triangleCount(): Graph[Int, ED]
def stronglyConnectedComponents(numIter: Int): Graph[VertexId, ED]
```

1. PageRank
2. Connected Components
3. Triangle Count
Spark ML

Core

APIs & Libraries

Spark Core Engine

Deploy

Locally
Single JVM

Cluster
Standalone, Mesos, YARN

Containers
docker-compose

Spark SQL & Data Frames
Spark Streaming Real-time processing
MLlib Machine Learning
GraphX Graph processing
Spark ML
Spark ML - Getting Started

- Spark ML
References

[2]. GraphX: Graph Processing in a Distributed Dataflow Framework by Gonzalez, Joseph, Reynold Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin and Ion Stoica in OSDI, 2014.

