Chapter 2.
Declarative Semantics

- Last updated: April 23, 2013 -

How do we know what a goal / program means?

→ Translation of Prolog to logical formulas

How do we know what a logical formula means?

→ Models of logical formulas (Declarative semantics) ← Now
→ Proofs of logical formulas (Operational semantics) ← Later
Question

- What is the meaning of this program?

```prolog
bigger(elephant, horse).
bigger(horse, donkey).

is_bigger(X, Y) :- bigger(X, Y).
is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).
```

Rephrased question: Two steps

1. How does this program translate to logic formulas?
2. What is the meaning of the logic formulas?
Semantics: Translation

How do we translate a Prolog program to a formula in First Order Logic (FOL)?

→ Translation Scheme

Can any FOL formula be expressed as a Prolog Program?

→ Normalization Steps
Translation of Prolog Programs

1. A Prolog program is translated to a set of formulas, with each clause in the program corresponding to one formula:

 \{
 \begin{align*}
 &\text{bigger(elephant, horse)}, \\
 &\text{bigger(horse, donkey)}, \\
 &\forall x. \forall y. (\text{bigger}(x, y) \rightarrow \text{is_bigger}(x, y)), \\
 &\forall x. \forall y. (\exists z. (\text{bigger}(x, z) \land \text{is_bigger}(z, y)) \rightarrow \text{is_bigger}(x, y)) \\
 \end{align*}
 \}

2. Such a set is to be interpreted as the conjunction of all the formulas in the set:

 \begin{align*}
 &\text{bigger(elephant, horse)} \land \\
 &\text{bigger(horse, donkey)} \land \\
 &\forall x. \forall y. (\text{bigger}(x, y) \rightarrow \text{is_bigger}(x, y)) \land \\
 &\forall x. \forall y. (\exists z. (\text{bigger}(x, z) \land \text{is_bigger}(z, y)) \rightarrow \text{is_bigger}(x, y))
 \end{align*}
Translation of Clauses

- Each comma separating subgoals becomes \land (conjunction).
- Each \leftarrow becomes \Rightarrow (implication).
- Each variable in the head of a clause is bound by a \forall (universal quantifier).

- $\forall x. \forall y \quad \text{son}(x, y) \leftarrow \text{father}(y, x) \land \text{male}(x)$

- Each variable that occurs only in the body of a clause is bound by a \exists (existential quantifier).

- $\forall x. (\text{grandfather}(x) \leftarrow \exists y. \exists z. \text{father}(x, y) \land \text{parent}(y, z))$
Translating Disjunction

- Disjunction is the same as two clauses:

\[
\text{disjunction}(X) :- \\
\quad \left(\begin{array}{l}
\text{a}(X, Y), \text{b}(Y, Z) \\
\text{; } \text{c}(X, Y), \text{d}(Y, Z)
\end{array} \right)
\]

- Variables with the same name in different clauses are different
- Therefore, variables with the same name in different disjunctive branches are different too!
- Good Style: Avoid accidentally equal names in disjoint branches!
 - Rename variables in each branch and use explicit unification

\[
\text{disjunction}(X) :- \\
\quad \left(\begin{array}{l}
\text{X=X1}, \text{a}(X_1, Y_1), \text{b}(Y_1, Z_1) \\
\text{; } \text{X=X2}, \text{c}(X_2, Y_2), \text{d}(Y_2, Z_2)
\end{array} \right)
\]

\[
\text{disjunction}(X1) :- \\
\quad \text{a}(X_1, Y_1), \text{b}(Y_1, Z_1)
\]

\[
\text{disjunction}(X2) :- \\
\quad \text{c}(X_2, Y_2), \text{d}(Y_2, Z_2)
\]
Declarative Semantics – in a nutshell
Meaning of Programs (in a nutshell)

Meaning of a program
Meaning of the equivalent formula.

\[
\begin{align*}
\text{bigger(elephant, horse)} & \land \\
\text{bigger(horse, donkey)} & \\
\quad & \land \\
\forall x. \forall y. (\text{bigger}(x, y) \rightarrow \text{is_bigger}(x, y)) & \\
\quad & \land \\
\forall x. \forall y. (\exists z. (\text{bigger}(x, z) \land \text{is_bigger}(z, y)) \rightarrow \text{is_bigger}(x, y))
\end{align*}
\]

Meaning of a formula
Set of logical consequences

\[
\begin{align*}
\text{bigger(elephant, horse)} & \land \\
\text{bigger(horse, donkey)} & \\
\quad & \land \\
\text{is_bigger(elephant, horse)} & \\
\quad & \land \\
\text{is_bigger(horse, donkey)} & \\
\quad & \land \\
\text{is_bigger(elephant, donkey)}
\end{align*}
\]
Meaning of Programs

Meaning of a program
Meaning of the equivalent formula.

\[
\text{bigger(elephant, horse)} \\
\land \\
\text{bigger(horse, donkey)} \\
\land \\
\forall x. \forall y. (\text{bigger}(x, y) \rightarrow \text{is_bigger}(x, y)) \\
\land \\
\forall x. \forall y. (\exists z. (\text{bigger}(x, z) \land \text{is_bigger}(z, y)) \rightarrow \text{is_bigger}(x, y))
\]

Meaning of a formula
Set of logical consequences

\[
\text{bigger(elephant, horse)} \\
\land \\
\text{bigger(horse, donkey)} \\
\land \\
\text{is_bigger(elephant, horse)} \\
\land \\
\text{is_bigger(horse, donkey)} \\
\land \\
\text{is_bigger(elephant, donkey)}
\]

Model =
Set of logical consequences =
What is true according to the formula
Semantics of Programs and Queries (in a nutshell)

Program

\[\text{bigger(elephant,horse)}. \]
\[\text{bigger(horse,donkey)}. \]
\[\text{is}_\text{bigger}(X,Y) \leftarrow \text{bigger}(X,Y). \]
\[\text{is}_\text{bigger}(X,Y) \leftarrow \text{bigger}(X,Z), \text{is}_\text{bigger}(Z,Y). \]

Formula

\[\text{bigger(elephant, horse)} \]
\[\wedge \]
\[\text{bigger(horse, donkey)} \]
\[\wedge \]
\[\forall x. \forall y. (\text{is}_\text{bigger}(x, y) \leftarrow \text{bigger}(x, y)) \]
\[\wedge \]
\[\forall x. \forall y. (\exists z. (\text{is}_\text{bigger}(x, y) \leftarrow \text{bigger}(x, z) \wedge \text{is}_\text{bigger}(z, y))) \]

Model

\[\text{bigger(elephant, horse)} \]
\[\wedge \]
\[\text{bigger(horse, donkey)} \]
\[\wedge \]
\[\text{is}_\text{bigger}(\text{elephant, horse}) \]
\[\wedge \]
\[\text{is}_\text{bigger}(\text{horse, donkey}) \]
\[\wedge \]
\[\text{is}_\text{bigger}(\text{elephant, donkey}) \]

Query

\[?- \text{bigger(elephant, X)} \]
\[\wedge \]
\[\text{is}_\text{bigger}(X, \text{donkey}) \]

Translation

Interpretation (logical consequence)

Matching
Declarative Semantics – the details

\[\rightarrow \text{Interpretations of formulas} \]
\[\rightarrow \text{Herbrand Interpretations} \]
\[\rightarrow \text{Herbrand Model} \]
\[\rightarrow \text{Logical Consequence} \]
Interpretations of Formulas

A formula

An Interpretation

An interpretation domain

loves: Man × Woman → Bool

Interpretations map symbols to meaning!
Interpretations of Formulas

Same formula

Slightly different Interpretation

Slightly different interpretation domain

loves: Person × Person → Bool

Interpretations map symbols to meaning!
Interpretations of Formulas

Same formula

Other Interpretation

Other interpretation domain

loves (john, mary)

targetOf: Spy × Secret → Bool

Interpretations map symbols to meaning!
Interpretations of Formulas

A formula

Our initial interpretation domain

An Interpretation

loves: Man × Woman → Bool

(brlbzf(prfkz, flurp))
What does this tell us?

Observations

- Formulas only have a meaning with respect to an interpretation
- An interpretation maps formulas to elements of an interpretation domain
 - **constants** to constant in the domain
 - e.g. “john” to
 - **function symbols** to functions on the domain
 - function symbols do not occur in our example
 - **predicate symbols** to predicates on the domain
 - e.g. “loves/2” to “targetOf: Spy × Secret → Bool”
 - **formulas** to truth values
 - e.g. “loves(john,mary)” to “true”
What does this tell us?

Dilemma

- Too many possible interpretations!
- Which interpretation to use for proving truth?

Solution

- For universally quantified formulas there is a “standard” interpretation, the “Herbrand interpretation”, which has two nice properties:
 - If any interpretation satisfies a given set of clauses S then there is a Herbrand interpretation that satisfies them
 \Rightarrow It suffices to check satisfiability for the Herbrand interpretation!
 - If S is unsatisfiable then there is a finite unsatisfiable set of ground instances from the Herbrand base defined by S.
 \Rightarrow Unsatisfiability can be checked finitely
Herbrand Interpretations

Herbrand Base = all positive ground literals in \(D \)

Herbrand Universe = all ground terms that can be constructed from the constants and function symbols in \(D \)

Formula

\[p(\,c_1, f(\,c_2)\,). \]

Herbrand Interpretation

\[\{ \, p : \text{HU} \times \text{HU} \rightarrow \text{true} \, \} = \text{Pred} \]

\[\{ \, c_1, c_2 \, \} = \text{Const} \]

\[\{ \, f/1 \, \} = \text{Func} \]

Interpretation domain domain \(D \)

\[p(\,c_1, c_1) \]
\[p(\,c_1, c_2) \]
\[p(\,c_1, f(\,c_1)) \]
\[\{ \, p(\,c_1, f(\,c_2)) \, \} \]
\[p(\,c_1, f(\,f(\,c_1))) \]
\[p(\,c_1, f(\,f(\,c_2))) \]
\[\ldots \]

\[p(\,c_2, c_2) \]
\[p(\,c_2, c_1) \]
\[p(\,c_2, f(\,c_1)) \]
\[p(\,c_2, f(\,c_2)) \]
\[\ldots \]

\[f(\,c_1), f(f(\,c_1)), \ldots \]
\[f(\,c_2), f(f(\,c_2)), \ldots \]

\[c_1 \]
\[c_2 \]
Herbrand Interpretations of Formulas with Variables

Formula

\[p(c_1, f(X), c_2). \]

Herbrand Interpretation

Interpretation domain D

\[\{ p: HU \times HU \times HU \to true \} = \text{Pred} \]
\[\{ c_1, c_2 \} = \text{Const} \]
\[\{ f/1 \} = \text{Func} \]

\[HU = \text{Herbrand Universe} \]
\[= \text{all ground terms that can be constructed from the constants and function symbols in } D \]

\[\text{Herbrand Base} \]
\[= \text{all positive ground literals in } D \]
Herbrand Models (1)

- The Interpretation Domain (D) of a program P consists of three sets:
 - **Const** contains all constants occurring in P
 - **Func** contains all function symbols occurring in P
 - **Pred** contains a predicate $p: \text{HU} \times \ldots \times \text{HU} \rightarrow \text{true}$

 for each predicate symbol p of arity n occurring in the program P

- The Herbrand Universe (HU) of a program P is the set of all ground terms that can be constructed from the function symbols and constants in P

- The Herbrand Base of a program P is the set of all positive ground literals that can be constructed by applying the predicate symbols in P to arguments from the Herbrand Universe of P
Herbrand Models (2)

- **A Herbrand Interpretation** maps each formula in a program P to the elements of the Herbrand Base that are its **logical consequences**
 - Each *ground fact* is mapped to true.
 - Each *ground instantiation* of a non-ground fact is mapped to true.
 - Each *ground instantiation* of the head literal of a rule that is a logical consequence of the rule body is mapped to true.

- **The Herbrand Model** of a program P is the **subset of the Herbrand Base of P that is true** according to the Herbrand Interpretation.
 - It is the **set of all logical consequences** of the program.

- **The Herbrand Model** of P can be **constructed by fixpoint iteration**:
 - Initialize the model with the ground instantiations of facts in P
 - Add all new facts that follow from the intermediate model and P
 - … until the model does not change anymore (= fixpoint is reached)
Constructing Models by Fixpoint Iteration

Program

\[p : - q. \]
\[q : - p. \]
\[p : - r. \]
\[r. \]

Formulas

\[p \leftarrow q \land \]
\[q \leftarrow p \land \]
\[p \leftarrow r \land \]
\[r \]

Model(s)

\[M_0 \]
\[r. \]
\[M_1 \]
\[r. p. \]
\[r. p. q. \]
\[M_2 \]
\[r. p. q. \]
\[M_3 \]
\[r. p. q. \]
\[M_4 = M_3 \]

Clauses contributing model elements in the respective iteration

\[r \% r \]
\[p \% r \]
\[r \% p \]
\[r \% q \]
\[p \% r \]
\[q \% p \]
\[p \% q \]
Model-based Semantics \rightarrow Algorithm

Model-based semantics
- Herbrand interpretations and Herbrand models
- Basic step = “Entailment” (Logical consequence)
- A formula is true if it is a logical consequence of the program

Algorithm = Logic + Control
- Logic = Clauses
- Control =
 - Bottom-up fixpoint iteration to build the model
 - Matching of queries to the model

Program
bigger(elephant, horse).
bigger(horse, donkey).
...

Formula
bigger(elephant, horse)
^
bigger(horse, donkey)
^
...

Model
bigger(elephant, horse)
^
bigger(horse, donkey)
^
...

Query
?- bigger(elephant, X)
^
is_bigger(X, donkey)

Translation Interpretation (logical consequence) Matching
Declarative Semantics Assessed

Pro
- Simple
 - Easy to understand
- Thorough formal foundation
 - Implication (entailment)

Perfect for understanding the meaning of a program

Contra
- Inefficient
 - Need to build the whole model in the worst case
- Inapplicable to infinite models
 - Never terminates if the query is not true in the model

Bad as the basis of a practical interpreter implementation
Chapter Summary

- Translation to logic
 - From clauses to formulas

- Declarative / Model-based Semantics
 - Herbrand Universe
 - Herbrand Interpretation
 - Herbrand Model

- Operational interpretation
 - Model construction by fix-point iteration
 - Matching of goals to the model

- Assessment
 - Strength
 - Weaknesses