Chapter 3. Declarative Semantics

- Last updated: April 29, 2014 -

How do we know what a goal / program means?
→ Translation of Prolog to logical formulas

How do we know what a logical formula means?
→ Models of logical formulas (Declarative semantics) ← Now
→ Proofs of logical formulas (Operational semantics) ← Later
Question

What is the meaning of this program?

bigger(elephant, horse).
bigger(horse, donkey).
is_bigger(X, Y) :- bigger(X, Y).
is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).

Rephrased question: Two steps

1. How does this program translate to logic formulas?
2. What is the meaning of the logic formulas?
Semantics: Translation

How do we translate a Prolog program to a formula in First Order Logic (FOL)?

→ Translation Scheme

Can any FOL formula be expressed as a Prolog Program?

→ Normalization Steps
Translation of Prolog Programs

1. A Prolog program is translated to a set of formulas, with each clause in the program corresponding to one formula:

\[
\begin{align*}
\{ & \ bigger(\ elephant,\ horse \), \\
& bigger(\ horse,\ donkey \), \\
& \forall x. \forall y. (\ bigger(x,\ y) \rightarrow is_bigger(x,\ y) \), \\
& \forall x. \forall y. (\exists z. (bigger(x,\ z) \land is_bigger(z,\ y)) \rightarrow is_bigger(x,\ y)) \\
\}
\end{align*}
\]

2. Such a set is to be interpreted as the conjunction of all the formulas in the set:

\[
\begin{align*}
& bigger(\ elephant,\ horse \) \land \\
& bigger(\ horse,\ donkey \) \land \\
& \forall x. \forall y. (\ bigger(x,\ y) \rightarrow is_bigger(x,\ y) \) \land \\
& \forall x. \forall y. (\exists z. (bigger(x,\ z) \land is_bigger(z,\ y)) \rightarrow is_bigger(x,\ y))
\end{align*}
\]
Translation of Clauses

- Each comma separating subgoals becomes \land (conjunction).
- Each $:$- becomes \rightarrow (implication)
- Each variable in the head of a clause is bound by a \forall (universal quantifier)

 \[
 \forall x. \forall y \text{ son}(x, y) \rightarrow \text{father}(y, x) \land \text{male}(x)
 \]

- Each variable that occurs only in the body of a clause is bound by a \exists (existential quantifier)

 \[
 \forall x. (\text{grandfather}(x) \rightarrow \exists y. \exists z. \text{father}(x, y) \land \text{parent}(y, z))
 \]
Translating Disjunction

- Disjunction is the same as two clauses:

\[
\text{disjunction}(X) :- \\
((a(X,Y), b(Y,Z)) \\
; (c(X,Y), d(Y,Z)) \\
) .
\]

\[
\text{disjunction}(X) :- \\
a(X,Y), b(Y,Z). \\
\text{disjunction}(X) :- \\
c(X,Y), d(Y,Z) .
\]

- Variables with the same name in different clauses are different
- Therefore, variables with the same name in different disjunctive branches are different too!
- Good Style: Avoid accidentally equal names in disjoint branches!
 - Rename variables in each branch and use explicit unification

\[
\text{disjunction}(X) :- \\
((X=X1, a(X1,Y1), b(Y1,Z1)) \\
; (X=X2, c(X2,Y2), d(Y2,Z2)) \\
) .
\]

\[
\text{disjunction}(X1) :- \\
a(X1,Y1), b(Y1,Z1). \\
\text{disjunction}(X2) :- \\
c(X2,Y2), d(Y2,Z2) .
\]
Declarative Semantics – in a nutshell
Meaning of Programs (in a nutshell)

Meaning of a **program**
Meaning of the equivalent formula.

- `bigger(elephant, horse)` ∧
- `bigger(horse, donkey)` ∧
- `∀x.∀y. (bigger(x, y) → is_bigger(x, y))` ∧
- `∀x.∀y. (∃z. (bigger(x, z) ∧ is_bigger(z, y)) → is_bigger(x, y))`

Meaning of a **formula**
Set of logical consequences

- `bigger(elephant, horse)` ∧
- `bigger(horse, donkey)` ∧
- `is_bigger(elephant, horse)` ∧
- `is_bigger(horse, donkey)` ∧
- `is_bigger(elephant, donkey)`
Meaning of Programs

Meaning of a program
Meaning of the equivalent formula.

\[\text{bigger(elephant, horse)} \land \text{bigger(horse, donkey)} \land \forall x. \forall y.(\text{bigger}(x, y) \rightarrow \text{is_bigger}(x, y)) \land \forall x. \forall y.(\exists z.(\text{bigger}(x, z) \land \text{is_bigger}(z, y)) \rightarrow \text{is_bigger}(x, y)) \]

Meaning of a formula
Set of logical consequences

\[\text{bigger(elephant, horse)} \land \text{bigger(horse, donkey)} \land \text{is_bigger(elephant, horse)} \land \text{is_bigger(horse, donkey)} \land \text{is_bigger(elephant, donkey)} \]

Model =
Set of logical consequences =
What is true according to the formula
Semantics of Programs and Queries (in a nutshell)

Program

bigger(elephant,horse).
bigger(horse,donkey).
is_bigger(X,Y) :-
bigger(X,Y).
is_bigger(X,Y) :-
bigger(X,Z),
is_bigger(Z,Y).

Formula

bigger(elephant, horse) ^
bigger(horse, donkey) ^
\forall x. \forall y.(is_bigger(x, y) \leftarrow bigger(x, y)) ^
\forall x. \forall y.(\exists z. (is_bigger(x, y) \leftarrow bigger(x, z) ^
is_bigger(z, y)))

Model

bigger(elephant, horse) ^
bigger(horse, donkey) ^
is_bigger(elephant, horse) ^
is_bigger(horse, donkey) ^
is_bigger(elephant, donkey)

Query

?- bigger(elephant, X) ^
is_bigger(X, donkey)

Translation

Interpretation
(logical consequence)

Matching
Chapter 3: Declarative Semantics

Declarative Semantics – the details

- Interpretations of formulas
- Herbrand Interpretations
 - Herbrand Model
- Logical Consequence
Interpretations of Formulas

A formula

An Interpretation

An interpretation domain

loves: \(\text{Man} \times \text{Woman} \rightarrow \text{Bool} \)

Interpretations map symbols to meaning!
Interpretations of Formulas

Same formula

Slightly different Interpretation

Slightly different interpretation domain

loves: Person \(\times \) Person \(\rightarrow \) Bool

(loves (john , mary)

Interpretations map symbols to meaning!
Interpretations of Formulas

Same formula

Other Interpretation

Other interpretation domain

Interpretations map symbols to meaning!
Interpretations of Formulas

A formula

An Interpretation

Our initial interpretation domain

loves: Man \times Woman \rightarrow \text{Bool}

\text{brlbzqf}(\text{prfkz} , \text{flurp})
What does this tell us?

Observations

- Formulas only have a meaning with respect to an interpretation
- An interpretation maps formulas to elements of an interpretation domain
 - **constants** to constant in the domain
 - e.g. “john” to
 - **function symbols** to functions on the domain
 - function symbols do not occur in our example
 - **predicate symbols** to predicates on the domain
 - e.g. “loves/2” to “targetOf: Spy × Secret → Bool”
 - **formulas** to truth values
 - e.g. “loves(john,mary)” to “true”
What does this tell us?

Dilemma

- Too many possible interpretations!
- Which interpretation to use for proving truth?

Solution

- For universally quantified formulas there is a “standard” interpretation, the “Herbrand interpretation”, which has two nice properties:
 - If any interpretation satisfies a given set of clauses \(S \) then there is a Herbrand interpretation that satisfies them
 \[\Rightarrow \] It suffices to check satisfiability for the Herbrand interpretation!
 - If \(S \) is unsatisfiable then there is a finite unsatisfiable set of ground instances from the Herbrand base defined by \(S \).
 \[\Rightarrow \] Unsatisfiability can be checked finitely
Herbrand Interpretations

Herbrand Interpretations

- **Formula**: \(p(c_1, f(c_2)) \)
- **Interpretation domain** \(D \)
- **Herbrand Interpretation**
 - \(\{ p : HU \times HU \rightarrow \text{true} \} = \text{Pred} \)
 - \(\{ c_1, c_2 \} = \text{Const} \)
 - \(\{ f/1 \} = \text{Func} \)

Herbrand Universe

- \(HU = \text{Herbrand Universe} \)
- \(= \text{all ground terms that can be constructed from the constants and function symbols in } D \)

Herbrand Base

- \(\text{Base} = \text{all positive ground literals in } D \)

© 2009 - 2014 Dr. G. Kniesel
Course: Advanced Logic Programming (ALP)
Herbrand Interpretations of Formulas with Variables

Formula: $p(c_1, f(X), c_2)$.

Herbrand Interpretation:

- $p: \text{HU} \times \text{HU} \times \text{HU} \rightarrow \text{true}$
- $\{c_1, c_2\} = \text{Const}$
- $\{f/1\} = \text{Func}$

Interpretation domain D:

- $\text{HU} = \text{Herbrand Universe}$
 - All ground terms that can be constructed from the constants and function symbols in D

- Herbrand Base
 - All positive ground literals in D
Herbrand Models (1)

- The Interpretation Domain (D) of a program P consists of three sets:
 - **Const** contains all constants occurring in P
 - **Func** contains all function symbols occurring in P
 - **Pred** contains a predicate \(p : \text{HU} \times \ldots \times \text{HU} \rightarrow \text{true} \) for each predicate symbol \(p \) of arity \(n \) occurring in the program P

- The Herbrand Universe (HU) of a program P is the set of all ground terms that can be constructed from the function symbols and constants in P

- The Herbrand Base of a program P is the set of all positive ground literals that can be constructed by applying the predicate symbols in P to arguments from the Herbrand Universe of P

= not negated
Herbrand Models (2)

- A Herbrand Interpretation maps each formula in a program P to the elements of the Herbrand Base that are its logical consequences
 - Each ground fact is mapped to true.
 - Each ground instantiation of a non-ground fact is mapped to true.
 - Each ground instantiation of the head literal of a rule that is a logical consequence of the rule body is mapped to true.

- The Herbrand Model of a program P is the subset of the Herbrand Base of P that is true according to the Herbrand Interpretation.
 - It is the set of all logical consequences of the program.

- The Herbrand Model of P can be constructed by fixpoint iteration:
 - Initialize the model with the ground instantiations of facts in P
 - Add all new facts that follow from the intermediate model and P
 - … until the model does not change anymore (= fixpoint is reached)
Constructing Models by Fixpoint Iteration

Program

\[
\begin{align*}
p &: - q. \\
q &: - p. \\
p &: - r. \\
r. \\
\end{align*}
\]

Formulas

\[
\begin{align*}
p &\iff q \land r. \\
q &\iff p \land r. \\
p &\iff r \land r. \\
r &\iff r \land r. \\
\end{align*}
\]

Fixpoint

\[
M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 = M_3
\]

Clauses contributing model elements in the respective iteration
Model-based Semantics → Algorithm

Model-based semantics

- Herbrand interpretations and Herbrand models
- Basic step = “Entailment” (Logical consequence)
- A formula is true if it is a logical consequence of the program

Algorithm = Logic + Control

- Logic = Clauses
- Control =
 - Bottom-up fixpoint iteration to build the model
 - Matching of queries to the model

Program

```
bigger(elephant,horse).
bigger(horse,donkey).
...
```

Formula

```
bigger( elephant, horse )
^
bigger( horse, donkey )
^
...
```

Model

```
bigger( elephant, horse )
^
bigger( horse, donkey )
^
...
```

Query

```
?- bigger( elephant, X )
^
is_bigger(X, donkey)
```

Translation

Interpretation (logical consequence)

Matching
Declarative Semantics Assessed

<table>
<thead>
<tr>
<th>Pro</th>
<th>Contra</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Simple</td>
<td>- Inefficient</td>
</tr>
<tr>
<td>◆ Easy to understand</td>
<td>◆ Need to build the whole model in the worst case</td>
</tr>
<tr>
<td>- Thorough formal foundation</td>
<td>- Inapplicable to infinite models</td>
</tr>
<tr>
<td>◆ implication (entailment)</td>
<td>◆ Never terminates if the query is not true in the model</td>
</tr>
</tbody>
</table>

- Perfect for understanding the meaning of a program
- Bad as the basis of a practical interpreter implementation
Chapter Summary

- Translation to logic
 - From clauses to formulas

- Declarative / Model-based Semantics
 - Herbrand Universe
 - Herbrand Interpretation
 - Herbrand Model

- Operational interpretation
 - Model construction by fix-point iteration
 - Matching of goals to the model

- Assessment
 - Strength
 - Weaknesses