
Rheinische Friedrich-Wilhelms-Universität Bonn - Institut für Informatik III
Advanced Logic Programming - Summer Semester 2017 - Dr. Günter Kniesel

Page 1 of 3

Assignment 9 (last one)

Due: Friday, 14.07.2017, 15:59 via Git

For help, contact alp-staff@lists.iai.uni-bonn.de (staff only) or

alp-course@lists.iai.uni-bonn.de (staff and participants).

Start working on the exercises early enough so that you can contact your tutor in time
if you have problems. Don’t expect your tutor to be available at midnight or during weekends!

Submit your implemented predicates as a file named “assignment09/solutions.pl” in the Git

repository of your group. Add to each task not just the code that you implemented but also

the console output of a session in which you test that each solution works for the provided

input data and some queries that represent sensible test cases. If no input data is provided

in the text of the task, create some sensible input data. If input data is represented as facts,

include them into the “solutions.pl” file and add suitable comments.

Task 1. Analyse terms (7 Points)

Implement a predicate term_type(+Term,-Type) that unifies Type to the most

specific type of Term. For instance, ?- term_type(1, T). should unify T to ‘integer’,

not to ‘number’ or ‘atomic’. The following test must succeed:

:-begin_tests(assignment_9_task_1).

test(term_type) :- term_type(_, T0), assertion(T0=var),

 term_type(a, T1), assertion(T1=atom),

 term_type(1, T2), assertion(T2=integer),

 term_type(1.0, T3), assertion(T3=float) ,

 term_type(f(1), T4), assertion(T4=compound),

 X=f(X),

 term_type(X, T5), assertion(T5=cyclic).

:-end_tests(assignment_9_task_1).

To run the test, add its code to your Prolog file, consult it and call?- run_tests. The SWI-

Prolog testing frameworkis documented in detail at http://www.swi-

prolog.org/pldoc/package/plunit.html. See Section 2.2.5 One body with multiple tests

using assertions for an explanation of assertion/1.

Submit your code (1 point per solved case) and the output of the successful test run (1

point).

mailto:alp-staff@lists.iai.uni-bonn.de
mailto:alp-course@lists.iai.uni-bonn.de
http://www.swi-prolog.org/pldoc/package/plunit.html
http://www.swi-prolog.org/pldoc/package/plunit.html
http://www.swi-prolog.org/pldoc/package/plunit.html
http://www.swi-prolog.org/pldoc/package/plunit.html
http://www.swi-prolog.org/pldoc/doc_for?object=section%284,%272.2.5%27,swi%28%27/doc/packages/plunit.html%27%29%29
http://www.swi-prolog.org/pldoc/doc_for?object=section%284,%272.2.5%27,swi%28%27/doc/packages/plunit.html%27%29%29
http://www.swi-prolog.org/pldoc/doc_for?object=section%284,%272.2.5%27,swi%28%27/doc/packages/plunit.html%27%29%29
http://www.swi-prolog.org/pldoc/doc_for?object=section%284,%272.2.5%27,swi%28%27/doc/packages/plunit.html%27%29%29

Rheinische Friedrich-Wilhelms-Universität Bonn - Institut für Informatik III
Advanced Logic Programming - Summer Semester 2017 - Dr. Günter Kniesel

Page 2 of 3

Task 2. Interactive IO predicates (7 Points)

Implement a predicate interactive_type_analysis/0 that performs the

following steps:

1. Ask the user for a term to be analysed.
2. Read from the console (standard input) a term terminated by a period.
3. Analyse the term with the predicate from task 1.
4. Write the corresponding term type nicely as an answer to the console

(standard output). If you failed to solve task 1 just write ‘This is the answer.’

5. Ask whether the user wants to continue or abort and tell him what to enter for

which option.

6. Read the input and abort or start again from 1.
Tip: There are many helpful predefined predicates. See

 http://www.swi-prolog.org/pldoc/man?section=IO for file handling

 http://www.swi-prolog.org/pldoc/man?section=termrw for reading and writing
terms

 http://www.swi-prolog.org/pldoc/man?section=format for formatted output.

Submit your code (1 point per solved case) and the output of a successful test session in

which you tested at least two terms before aborting (1 point).

Task 3. File IO predicates (9 Points)

Implement a predicate general_type_analysis/0 that behaves like

interactive_type_analysis/0 but additionally

7. asks the user at the start whether the session should also be logged in a file,
8. asks for a file name (if the user answered ‘yes’) and writes all subsequent

interaction (questions and answers) also to the file, up to and including the final
‘abort’ choice of the user,

9. closes the file properly, no matter whether the interaction was terminated
normally by entering ‘abort’ or abnormally by an exception or interrupt (like <Ctrl>-
C).

Tip: Think first which type of IO (ISO, Edinburgh, SWI) is best suited for your task.

Submit your code (1 point per solved case).

Task 4. Metaprogramming (2 points)

Task 2 of assignment sheet 6 required to find a way to compute and print out (on the

console) all solutions of a given predicate p(X,Y). The sample solution is online

meanwhile. However, it is unsatisfactory, since it applies only to the predicate p/2.

http://www.swi-prolog.org/pldoc/man?section=IO
http://www.swi-prolog.org/pldoc/man?section=termrw
http://www.swi-prolog.org/pldoc/man?section=format

Rheinische Friedrich-Wilhelms-Universität Bonn - Institut für Informatik III
Advanced Logic Programming - Summer Semester 2017 - Dr. Günter Kniesel

Page 3 of 3

Your task is to improve that solution by writing a generic predicate

print_all_solutions(Goal)

that takes an arbitrary goal as a parameter, calls it exhaustively (that means, until all

results have been computed via backtracking) and prints each result to the standard

output.

Task 5. Metaprogramming (11 points)

Often, one changes the implementation of a predicate, believing that the new version is

more understandable, better structured, more efficient, or better in some other way. In

such cases, it would be good, however, to make sure that the changes did not affect the

behavior of the predicate. A good way to do this is not to overwrite the predicate

immediately but create a renamed version of it (let’s assume, we add ‘_new’ to the

predicate name), implement our improvement idea and then compare the original and

new version, to make sure that

a) the new version finds each result that the old one found

b) the new version does not find any result that the old one didn’t find.

Your task is to automate this comparison by implementing a predicate

Your task is to improve that solution by writing a generic predicate

print_differences(PredName, Arity)

that takes the name and arity of the original predicate as input, calls each of the two

versions (the original and the new one) and prints out only the problem cases, that is,

a) results found by the original version but not by the new one

b) results found by the new version but not by the original one.

Task 6. Metaprogramming (2 points)

Is print_differences/2 (previous task) sufficient to guarantee identical behavior of the

old and new predicate? Explain why (or why not). (1 Point per argument pro or contra)

