Chapter 2.
Declarative Semantics

- Last updated: May 29, 2017 -

How do we know what a goal / program means?
→ Translation of Prolog to logical formulas

How do we know what a logical formula means?
→ Models of logical formulas (Declarative semantics) ← Now
→ Proofs of logical formulas (Operational semantics) ← Later
Question

What is the meaning of this program?

\[
\begin{align*}
\text{bigger(elephant, horse).} \\
\text{bigger(horse, donkey).} \\
\text{is_bigger(X, Y) \colon= bigger(X, Y).} \\
\text{is_bigger(X, Y) \colon= bigger(X, Z), is_bigger(Z, Y).}
\end{align*}
\]

Rephrased question: Two steps

1. How does this program translate to logic formulas?
2. What is the meaning of the logic formulas?
Semantics: Translation

How do we translate a Prolog program to a formula in First Order Logic (FOL)?

Can any FOL formula be expressed as a Prolog Program?
Translation of Prolog Programs

1. A Prolog program is translated to a set of formulas, with each clause in the program corresponding to one formula:

 \{
 \text{bigger(elephant, horse),}
 \text{bigger(horse, donkey),}
 \forall x. \forall y. (\text{bigger}(x, y) \rightarrow \text{is_bigger}(x, y)),
 \forall x. \forall y. (\exists z. (\text{bigger}(x, z) \land \text{is_bigger}(z, y)) \rightarrow \text{is_bigger}(x, y))
 \}

2. Such a set is to be interpreted as the conjunction of all the formulas in the set:

 \text{bigger(elephant, horse)} \land
 \text{bigger(horse, donkey)} \land
 \forall x. \forall y. (\text{bigger}(x, y) \rightarrow \text{is_bigger}(x, y)) \land
 \forall x. \forall y. (\exists z. (\text{bigger}(x, z) \land \text{is_bigger}(z, y)) \rightarrow \text{is_bigger}(x, y))
Translation of Clauses

- Each comma separating subgoals becomes \land (conjunction).

- Each \leftarrow becomes \leftarrow (implication)

- Each variable in the head of a clause is bound by a \forall (universal quantifier)

$$\forall x. \forall y \quad \text{son}(x, y) \leftarrow \text{father}(y, x) \land \text{male}(x)$$

- Each variable that occurs only in the body of a clause is bound by a \exists (existential quantifier)

$$\forall x. \exists y. \exists z. \quad \text{grandfather}(x) \leftarrow \text{father}(x, y) \land \text{parent}(y, z)$$
Translating Disjunction

- Disjunction is the same as two clauses:

 \[
 \text{disjunction}(X) : - \\
 \quad ((\mathit{a}(X,Y), \mathit{b}(Y,Z)) \\
 \quad ; (\mathit{c}(X,Y), \mathit{d}(Y,Z)) \\
 \quad).
 \]

- Variables with the same name in different clauses are different.

- Therefore, variables with the same name in different disjunctive branches are different too!

- Good Style: Avoid accidentally equal names in disjoint branches!
 - Rename variables in each branch and use explicit unification.

 \[
 \text{disjunction}(X) : - \\
 \quad ((\mathit{X} = \mathit{X}1, \mathit{a}(\mathit{X}1,\mathit{Y}1), \mathit{b}(\mathit{Y}1,\mathit{Z}1)) \\
 \quad ; (\mathit{X} = \mathit{X}2, \mathit{c}(\mathit{X}2,\mathit{Y}2), \mathit{d}(\mathit{Y}2,\mathit{Z}2)) \\
 \quad).
 \]

 \[
 \text{disjunction}(\mathit{X}1) : - \\
 \quad \mathit{a}(\mathit{X}1,\mathit{Y}1), \mathit{b}(\mathit{Y}1,\mathit{Z}1). \\
 \quad \text{disjunction}(\mathit{X}2) : - \\
 \quad \mathit{c}(\mathit{X}2,\mathit{Y}2), \mathit{d}(\mathit{Y}2,\mathit{Z}2).
 \]
Declarative Semantics – in a nutshell
Meaning of Programs (in a nutshell)

Meaning of a program
Meaning of the equivalent formula.

- \(\text{bigger(elephant, horse)} \)
- \(\wedge \)
- \(\text{bigger(horse, donkey)} \)
- \(\wedge \)
- \(\forall x. \forall y. (\text{bigger}(x, y) \rightarrow \text{is_bigger}(x, y)) \)
- \(\wedge \)
- \(\forall x. \forall y. (\exists z. (\text{bigger}(x, z) \wedge \text{is_bigger}(z, y)) \rightarrow \text{is_bigger}(x, y)) \)

Meaning of a formula
Set of logical consequences

- \(\text{bigger(elephant, horse)} \)
- \(\wedge \)
- \(\text{bigger(horse, donkey)} \)
- \(\wedge \)
- \(\text{is_bigger}(\text{elephant}, \text{horse}) \)
- \(\wedge \)
- \(\text{is_bigger}(\text{horse}, \text{donkey}) \)
- \(\wedge \)
- \(\text{is_bigger}(\text{elephant}, \text{donkey}) \)
Meaning of Programs

Meaning of a program

Meaning of the equivalent formula.

\[
\begin{align*}
\text{bigger(elephant, horse)} \\
\land \\
\text{bigger(horse, donkey)} \\
\land \\
\forall x. \forall y. (\text{bigger}(x, y) \rightarrow \\
& \quad \text{is_bigger}(x, y)) \\
\land \\
\forall x. \forall y. (\exists z. (\text{bigger}(x, z) \land \\
& \quad \text{is_bigger}(z, y)) \rightarrow \\
& \quad \text{is_bigger}(x, y))
\end{align*}
\]

Meaning of a formula

Set of logical consequences

\[
\begin{align*}
\text{bigger(elephant, horse)} \\
\land \\
\text{bigger(horse, donkey)} \\
\land \\
\text{is_bigger}(\text{elephant, horse}) \\
\land \\
\text{is_bigger}(\text{horse, donkey}) \\
\land \\
\text{is_bigger}(\text{elephant, donkey})
\end{align*}
\]
Semantics of Programs and Queries (in a nutshell)

Program

- `bigger(\text{elephant}, \text{horse})`.
- `bigger(\text{horse}, \text{donkey})`.
- `\text{is_bigger}(X, Y) \leftarrow \text{bigger}(X, Y)`.
- `\text{is_bigger}(X, Y) \leftarrow \text{bigger}(X, Z), \text{is_bigger}(Z, Y)`.

Formula

- `\text{bigger}(\text{elephant}, \text{horse})`.
- `\text{bigger}(\text{horse}, \text{donkey})`.
- `\forall x. \forall y. (\text{is_bigger}(x, y) \leftarrow \text{bigger}(x, y))`.
- `\forall x. \forall y. (\exists z. (\text{is_bigger}(x, y) \leftarrow \text{bigger}(x, z) \land \text{is_bigger}(z, y)))`.

Model

- `\text{bigger}(\text{elephant}, \text{horse})`.
- `\text{bigger}(\text{horse}, \text{donkey})`.
- `\text{is_bigger}(\text{elephant}, \text{horse})`.
- `\text{is_bigger}(\text{horse}, \text{donkey})`.
- `\text{is_bigger}(\text{elephant}, \text{donkey})`.

Query

- `?- \text{bigger}(\text{elephant}, X) \land \text{is_bigger}(X, \text{donkey})`.

Translation

Interpretation

(logical consequence)

Matching
Model-based Semantics → Algorithm

Model-based semantics
- Herbrand interpretations and Herbrand models
- Basic step = “Entailment” (Logical consequence)
- A formula is true if it is a logical consequence of the program

Algorithm = Logic + Control
- Logic = Clauses
- Control =
 - Bottom-up fixpoint iteration to build the model
 - Matching of queries to the model

Program
- bigger(elephant, horse).
bigger(horse, donkey).
...

Formula
- bigger(elephant, horse).
^ bigger(horse, donkey).
^ ...

Model
- bigger(elephant, horse).
^ bigger(horse, donkey).
^ ...

Query
?- bigger(elephant, X).
^ is_bigger(X, donkey)

Translation Interpretation (logical consequence) Matching
Constructing Models by Fixpoint Iteration

Program:

\[
\begin{align*}
p &: q. \\
qu &: p. \\
p &: r. \\
r &.
\end{align*}
\]

Formulas:

\[
\begin{align*}
p &\leftarrow q \land \\
q &\leftarrow p \land \\
p &\leftarrow r \land \\
r &.
\end{align*}
\]

Model(s):

\[
\begin{align*}
M_0 &
\rightarrow M_1 &
\rightarrow M_2 &
\rightarrow M_3 &
\rightarrow M_4 = M_3
\end{align*}
\]

Clauses contributing model elements in the respective iteration:

\[
\begin{align*}
r &\% r \\
p &\% p \\
p &\% q \\
p &\% q
\end{align*}
\]
Declarative Semantics Assessed

Pro
- Simple
 - Easy to understand
- Thorough formal foundation
 - Implication (entailment)

Perfect for understanding the meaning of a program

Excellent query language

Contra
- Inefficient
 - Need to build the whole model in the worst case
- Inapplicable to infinite models
 - Never terminates if the query is not true in the model

Bad as the basis of a practical interpreter implementation

Cannot express execution order, side-effects (e.g. I/O), …

No programming language
Chapter Summary

- Translation to logic
 - From clauses to formulas

- Declarative / Model-based Semantics
 - Herbrand Universe
 - Herbrand Interpretation
 - Herbrand Model

- Operational interpretation
 - Model construction by fix-point iteration
 - Matching of goals to the model

- Assessment
 - Strength
 - Weaknesses