
Page 1 of 3

Rheinische Friedrich-Wilhelms-Universität Bonn Aspect-Oriented Software Development
Institut für Informatik III Course in the summer semester 2009
Prof. Dr. A. B. Cremers Dr. Günter Kniesel, Daniel Speicher

Exercise Sheet 11

Due: Sunday 12.07.2009, 23:59:59 via SVN

For help, contact aosd-staff@lists.iai.uni-bonn.de (staff only) or

aosd-course@lists.iai.uni-bonn.de (staff and participants).

Please start working on the exercises early enough so that you can contact us in
time in case of problems. Don’t expect us to be available during weekend!

Exercise 1: “AspectJ/LogicAJ Quickies” (9 Points)

a) Implement, if possible, a pointcut that matches every execution of

System.out.println(..).

b) Your program has a field public int field. Name all primitive pointcuts

that match a field++ statement and explain why they do.

c) Is it possible to simulate the cflow-pointcut (obviously without using cflow

or cflowbelow)? If yes, describe how you would do it (no need to actually

implement it).

d) What is the value of the variable of an args-pointcut combined conjunctively

with a set-pointcut?

e) Which types are returned by the this- and target-pointcuts of the method

calls in boo()?
class X{

void foo(){};

}

class Y{

void boo(){

final X x = new X();

x.foo();

boo2();

new Y(){

void boo(){

x.foo();

boo2();

}

}.boo();

}

void boo2(){}}

mailto:aosd-staff@lists.iai.uni-bonn.de
mailto:aosd-course@lists.iai.uni-bonn.de

Page 2 of 3

f) Method m is defined in class C. Is there a way to find out if method m is called

by another method in C?

g) Can a pointcut match join points in advices? If it does, is there a way to

prohibit this?

h) Which annotation would you prefer and what are your reasons:

@TransmissionOperation or @TransmissionLock?

i) Is the value of obj in the following two pointcuts always the same when they

match the same foo(..)?
pointcut p1(Object obj): call(* foo(..)) && target(obj);

pointcut p2(Object obj): execution(* foo(..)) && this(obj);

Give a counter-example if this is not the case.

j) Is this a legal pointcut in LogicAJ? Justify your answer.

method(* ?type.foo(..))

&& method(* ?type.boo(..))

k) Explain the ?After in the LogicAJ substring predicate pointcut
subString(?String:string, ?Start:int, ?Length:int, ?After:int,

?Sub:string)

Exercise 2: “Precedence I” (3 Points)

In your repository you will find the project ES11_E02_Precedence. The program calls

a begin method that tells you that your working day just started and an end method

that tells you that your working day is over.

a) Now your employer got a new face recognition system. Please write an advice

in the aspect A1 that adds “Identity checked” to the console. The

advice should be applied after begin() is executed.

b) The new system also automatically starts your computer. Write another

advice, this time in an aspect A2 that adds “Your computer is

starting” to the console. Use the same pointcut as in a) to make sure that

the same joinpoints are captured.

c) Make sure that the computer only starts after the identity has been checked.

Page 3 of 3

Exercise 3: “Precedence II” (4 Points)

We now take the program of exercise 2 and add some more functionality.

a) Write an aspect DoorHandeling that adds “The door is open” to

the console after the call of begin() and “The door is closed” after

the call of end().

b) Write an aspect LightHandling that adds ”The light is switched

on” after the call of begin() and “The light is switched off” to

the console after the call of end().

c) After you implemented the aspects try if it is possible to use precedence to

make sure that the advices are executed in an order so that outputs in the

console looks like this:

"Begin of your office day."

"The door is open."

"The light is switched on."

"End of your office day."

"The light is switched off."

"The door is closed."

What problems do you encounter?

Exercise 4: “Precedence III” (4 Points)

To see how the precedence can affect the correctness of the code you now will try

several possibilities. In the project ES11_E04_PrecedenceIII you will find a class Base
that does nothing except that it accesses the field f. The class Base is the common

joinpoint for the introductions, and the access to f is the common joinpoint for the

advices of the Counter and Getter aspect.

The counter aspect introduces the counter f_count for the field f to the class

Base and increments it before each access to f.

The getter aspect introduces the getter method getf for the field f to the class
Base and enforces its use instead of direct accesses to f.

 Try the possible orderings of the aspects using precedence.

 Write down for each order, which output you would expect.

 Does AspectJ give you in each case the output you expected?

 In case of differences between the expected and actual output, try to explain

what could be the cause of the difference. Do you see any semantic

interference, weaving interference or even both?

