
Chapter 3
Requirements Elicitation

O O

Requirements Elicitation

Object-Oriented

SoftwareConstruction

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge, , p , g gg
(based on Bruegge & Dutoit)



Overview

Introduction to requirements engineeringIntroduction to requirements engineering
General view on requirements elicitation
Process of requirements elicitation (and analysis)Process of requirements elicitation (and analysis)
Elicitation Techniques

Scenarios
Interviews 
Observation 

From scenarios to use cases
Conclusions

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 2



Software Development Process:
A Brief Overview

System Object Implemen-Requirements Requirements System
Design

Object
Design

Implemen
tation TestingRequirements

Elicitation
Requirements

Analysis

Expressed in 
Terms of

Structured 
by

Realized 
by

Implemented 
by

Verified 
by

class...
class...
class... ?

Sub-

class...

Source
C d

Solution 
Domain 
Obj

Application
Domain 
Obj

Test 
C

? 
class....? 

Use Case
M d l

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 3

systems CodeObjectsObjects CasesModel



First View on 
Requirements Engineeringq g g

Requirements Engineering is the first phase of the SoftwareRequirements Engineering is the first phase of the Software 
Lifecycle
Production of a specification from informal ideas
Goal: Requirements Specification

System requirements specification: requirements describe Software 
and Hardwareand Hardware
Software requirements specification: describe only Software

RE i b t h t th t h ld d ( t h t d it)RE is about what the system should do (not how to do it)

Key influencing factor to the development processKey influencing factor to the development process
Failures made here result in high costs in later development phases
System will meet the user/customer needs

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 4



Requirements Engineering:
Input and Outputp p

Initial InputInitial Input
A Vision of a system to be created (vague)
Different stakeholders with different interestse e t sta e o de s t d e e t te ests

Problem Statement

Desired Output
Specification as complete as possible

C l t f th bl ( ll l t i tComplete coverage of the problem (all relevant requirements are 
captured)
Complete and exact definition of each requirement

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 5



Requirements Elicitation
First view

Encompass all activities involved in discovering the requirementsEncompass all activities involved in discovering the requirements 
of a system
System developers and engineers work in close relationship with y p g p
customer and end-users to 

Find out more about the problem to be solved
d b h f l f hTo describe the functionality of the system

Understand the application domain (“speak its language”)
Hardware constraints and so forthHardware constraints … and so forth

Not just a simple process about fishing for requirements, but a 
highly complex process:

Customer rarely have a clear picture of their requirements
Different people have conflicting requirements

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 6



Requirements Elicitation
Relation to Requirements Analysis 

Requirements
Engineering

Requirements
Elicitation + Requirements

Analysis

• Design basis for 
developers

• Basis for Discussions with 
customer

• Technical specification of 
the system in terms 
understood by the 

• Definition of the system in 
terms understood by the 
customer y

developer 

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 7



Process of Requirements Elicitation:
Products of Requirements Processq

Problem
Statement

Requirements
Elicitation

Requirements specification:Requirements specification: 
functional and 
non-functional 
requirements

Requirements

requirements

Analysis
Analysis Model:  
dynamic model
object model

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 8

object model



Requirements and their Meaning

Definition of term “Requirement”Definition of term Requirement
A condition or capability of the system needed by a user to solve a 
problem or to achieve an objective
Condition or capability that must be met by a system

Satisfies a contract, standard, specification

Requirements might be expressed by the customer in different forms:Requirements might be expressed by the customer in different forms: 
Information, Ideas, Constraints

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 9



Functional and Non-Functional 
Requirementsq

Functional requirements
Describe the interactions between the system and its environment 
independent from implementation

Non-functional requirements (Most typical)q ( yp )
Quality aspects of the system not directly related to functional 
behavior.
Reliability Performance Availability Supportability UsabilityReliability, Performance, Availability, Supportability, Usability, 
Tailorability, Security

Pseudo requirements (Non-functional requirements B)
I d b th li t th i t i hi h th tImposed by the client or the environment in which the system 
operates
Legal requirements
Design and Implementation Constraints

Project Management (Non-functional requirements C)
Budget Release Date

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 10

Budget, Release Date



The Goal: Analysis Model 
(vs. Requirements Specification)( q p )

Both models focus on the requirements from the user’s view ofBoth models focus on the requirements from the user s view of 
the system. 
Requirements specification uses natural language (derived from q p g g (
the problem statement)
The analysis model uses formal or semi-formal notation.

Our graphical language UML can be used in a formal as well as in 
a semi formal way (http://martinfowler com/bliki/UmlMode html)a semi formal way. (http://martinfowler.com/bliki/UmlMode.html)
Formal notations encompass an exact mathematical syntax and 
semantic

The starting point is the problem statement

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 11



Starting with the Problem Statement

The problem statement is developed by the client as a condensedThe problem statement is developed by the client as a condensed 
description of the requirements that should be addressed by the 
system
Describes the problem that should be solved
It describes “what” is needed, not “how” it should be reached

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 12



Starting with the Problem Statement:
Ingredientsg

Current situation: The Problem to be solved
A few pages

Description of one or more scenarios
Some initial requirementsSome initial requirements 

Functional and Non-functional requirements
No complete description

Project Schedule
Major milestones that involve interaction with the client including 
deadline for delivery of the systemdeadline for delivery of the system

Target environment
The environment in which the delivered system has to perform a 

ifi d t f t t tspecified set of system tests
Client Acceptance Criteria

Criteria for the system tests

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 13

y



Starting with the Problem Statement:
Problem vs. Changeg

There is a problem in the current situation
Examples:Examples: 

The response time in a travel booking system is far too slow
There have been illegal attacks to the system 

A change either in the application domain or in the solution 
domain has appeareddomain has appeared

Change in the application domain
A new function (business process) is introduced into the business( p )
Example: A function is provided for credit payment with fingerprint as 
authorization

Change in the solution domainChange in the solution domain
A new solution (technology enabler) has appeared
Example: New standards (implementation) for secure network 

i ti

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 14

communication



Example: Library System

Idea: A Library Management System should beIdea: A Library Management System should be 
designed. Information on books, CDs, DVDs, Journals, 
etc. can be stored and retrieved Problem Statement

Possible Requirements: functional 
requirement

Searching by Title, Author, and/or ISDN should be 
possible
User Interface should be web-based (accessible via

Implementation 
requirement

User Interface should be web based (accessible via 
WWW Browser)
At least 20 transactions per seconds should be possible
All i h ld b il bl i hi 10 i

performance 
requirement

All services should be available within 10 minutes
Users have no access to personal data of other users

availability 
requirement

S it

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 15

Security 
requirement



Process of Requirements Elicitation:
Activities during Requirements Elicitationg q

Identifying ActorsIdentifying Actors
Types of users, roles, external systems 

Identifying Scenarios
I t ti b t d th t ( ibl )Interactions between users and the systems (one possible case)

Later on in this lesson
Identifying Use Cases

Abstractions of Scenarios 
(Many possible cases)

Scenarios
Use Case

(=class of scenarios)
Refining Use Cases

Refinements, adding exceptions, etc.
Identifying Relationships among Use Casesy g p g
Identifying Non-Functional Requirements 

Security issues, Performance, etc.

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 16



Process of Requirements Elicitation:
How to elicit Requirements?q

Sources of informationSources of information
Documents about the application domain
Manual and technical documents of legacy systemsa ua a d tec ca docu e ts o egacy syste s

User Participation
Elicitation Techniques (see next slides)

hApproach
First describe a set of scenarios with elicitation techniques
Then aggregate the identified scenarios towards use casesThen aggregate the identified scenarios towards use cases
= Bottom Up, Avoids misunderstandings of abstractions

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 17



Elicitation techniques - Idea

Specific techniques which may be used to collect knowledge about 
system requirementssystem requirements
Requirements elicitation is cooperative process involving 
requirements engineers and system stakeholders. q g y
Some possible problems:

Not enough time for elicitation
Inadequate preparation by engineers
Stakeholders are unconvinced of the need for a new system

T pes of Selection C ite iaTypes of Selection Criteria:
Interviews
ObservationsObservations
Scenarios
Brainstorming

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 18



Selection Criteria

System to be created (I)System to be created (I)
Greenfield Engineering (completely new)
Reengineering (revise an existing system)
Interface Engineering (put a new front to an existing system)

System to be created (II)
Highly interactive (Cooperation Support System)Highly interactive (Cooperation Support System)
Specific applications like Games
Criticality (Comfort, Essential Money, Lives) 

Budget/Time
Degree of User Participation

TimeTime
Experience of users

…. (many more)

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 19



Interviews 
Essentials

Probably the most common technique of requirements elicitation.y q q
Interviewers must be open-minded and should not approach the 
interview with pre-conceived notions about what is required
Stakeholders must be given a starting point for discussionStakeholders must be given a starting point for discussion

a question
a requirements proposalq p p
an existing system

Interviewers must be aware of organizational politics
S i t t b di d b f th i liti lSome requirements may not be discussed because of their political 
implications

Types of interviews:
Structured vs. unstructured
Oral vs. written interviews
Interview of a group vs a single person

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 20

Interview of a group vs. a single person



Interviews:
Different Goals

During elicitation (early)
Understanding role of interviewee within organization
Understanding the work context
Getting requirements on new systemGetting requirements on new system

Goal: Description of complete scenarios

During analysis
Discussing use cases with client and users
Correction and refinement (requirements and functionality)

Goal: Getting complete use cases

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 21



Observation

People often find it hard to describe what they do because it is soPeople often find it hard to describe what they do because it is so 
natural to them.
Actual work processes often differ from formal, prescribed p , p
processes

Sometimes the best way to understand it is to observe them at 
workwork

Approach: adopt methods e g from the social sciences whichApproach: adopt methods e.g. from the social sciences which 
proved to be valuable in understanding actual work processes
Suitable Approach: Ethnography (Lecture ORE)

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 22



Scenarios – Overview 1

Motivation:
System stakeholder find it more intuitive to reason about concreteSystem stakeholder find it more intuitive to reason about concrete 
examples rather than abstract descriptions of the functions 
provided by a system (use cases)

Solution: Scenario
“A narrative description of what people do and experience as theyA narrative description of what people do and experience as they 
try to make use of computer systems and applications” 
[M. Carrol, Scenario-based Design, Wiley, 1995]
A concrete focused informal description of a single feature of theA concrete, focused, informal description of a single feature of the 
system used by a single actor
Discovering scenarios exposes possible system interactions and 

l f ili i hi h b i dreveals system facilities which may be required

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 23



Scenarios – Overview 2

Scenarios are stories which explain how a system might be used. 
They should include:They should include:

a description of the system state before entering the scenario
the normal flow of events in the scenario
exceptions to the normal flow of events
information about concurrent activities
a description of the system state at the end of the scenarioa description of the system state at the end of the scenario

Scenarios can have many different uses during the software 
lif llifecycle:

Requirements Elicitation: As-is scenario, visionary scenario
Client Acceptance Test: Evaluation scenariop
System Deployment: Training scenario.

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 24



Scenarios:
Different Typesyp

As-is scenario
d d bUsed in describing a current situation

Usually used in re-engineering projects
The user describes the systemy

Visionary scenario
Used to describe a future system
U ll d i G fi ld i i d i i j tUsually used in Greenfield engineering and reengineering projects
Can often not be done by the user or developer alone

brainstorming sessions
needs and possiblities

Evaluation scenario
User tasks against which the system is to be evaluatedUser tasks against which the system is to be evaluated

Training scenario
Step by step instructions that guide a novice user through a system

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 25



Process of Requirements Elicitation:
The Requirements Elicitation Cycle

Tests
Validation

q y

Ob i A I S i

Validation Validation
Validation

Observing users

Interviewing 

As-Is Scenarios

Visionary 

Use Cases +
Refinements Prototypes

users and clients Scenarios

Validation ValidationValidation Validation

Stable Requirements Specification
(System Specification)

• Functional Requirements
• Non-Functional Requirements
• Use Cases

( y p )

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 26

• Scenarios



Scenarios:
Example - Accident Management Systemp g y

Your Task (Problem Statement):
Build a requirements model for a system that allows to report fireBuild a requirements model for a system that allows to report fire 
incidents. It should be able to report incidents for many types of 
buildings and things.

The approach: Start with single Scenario, e.g. “Warehouse in 
fire”. Interview Guideline:fire . Interview Guideline:
What do you need to do if a person reports “Warehouse on Fire?”
Who is involved in reporting an incident?p g
What does the system do, if no fire cars are available? 
Can the system cope with a simultaneous incident report  
“Warehouse on Fire?”
What do you need to do if the “Warehouse on Fire” turns into a 
“Cat in the Tree”?

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 27

Cat in the Tree ?



Scenario:
Example - Warehouse on Fire (Bruegge)p ( gg )

Bob, driving down main street in his patrol car notices smoke 
coming out of a warehouse His partner Alice reports thecoming out of a warehouse. His partner, Alice, reports the 
emergency from her car by using the SYSTEM. 

Alice enters the address of the building a brief description of itsAlice enters the address of the building, a brief description of its 
location (i.e., north west corner), and an emergency level. In 
addition to a fire unit, she requests several paramedic units on 
the scene. She confirms her input and waits for an p
acknowledgment.

John, the Dispatcher, is alerted to the emergency by a beep of , p , g y y p
his workstation. He reviews the information submitted by Alice 
and acknowledges the report. He allocates a fire unit and two 
paramedic units to the Incident site and sends their estimated 
arrival time (ETA) to Alicearrival time (ETA) to Alice.

Alice received the acknowledgment and the ETA.

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 28



Scenarios: 
Observations about “Warehouse on Fire”

Concrete scenario
Describes a single instance of reporting a fire incident.
Does not describe all possible situations in which a fire can be 
reportedreported.

Normal behavior (“lucky day” scenario)
No exceptional cases

Pa ticipating acto sParticipating actors
Bob, Alice and  John = concrete names

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 29



Scenarios: 
Observations about “Warehouse on Fire”

… ok, but we have even more scenarios available and identified:
Report fire in a car
Report flat on fire
Repo t cat on fi eReport cat on fire
Report truck on fire

Next step: aggregate these scenarios towards a coherent use 
case to describe the possible sequence of events to “report a fire 
incident”

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 30



Use Case:
Example – ReportFireIncidentp p

The Fireman on duty notices a fire incident. The Fireman or his 
Replacement (hereafter termed Initiator) reports the emergencyReplacement (hereafter termed Initiator) reports the emergency 
from their car by using the SYSTEM. 

The Initiator enters the address of the corresponding fireplace aThe Initiator enters the address of the corresponding fireplace, a 
brief description of its location (i.e., north west corner), and an 
emergency level. In addition to a fire unit, the Initiator requests 
several paramedic units on the scene. He confirms his input and p p
waits for an acknowledgment.

The Dispatcher on duty, is alerted to the emergency by a beep of p y, g y y p
his workstation. He reviews the information submitted by the 
Initiator and acknowledges the report. He allocates a fire unit 
and a suitable number of paramedic units to the Incident site 
and sends their estimated arrival time (ETA) back to the Initiatorand sends their estimated arrival time (ETA) back to the Initiator.

The Initiator receives the acknowledgment and the ETA.

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 31



Use Case: 
Observations about “ReportFireIncident”p

A more abstract use case 
Describes a potentially huge number of instances of reporting a fire 
incident,
Describe all possible situations in which a fire can be reportedDescribe all possible situations in which a fire can be reported.

Normal behavior (“lucky day” use case)
No exceptional cases

Pa ticipating acto sParticipating actors
Initiator, Fireman, Representative

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 32



From Scenarios to use cases
First passp

Use case: an abstraction of possible coherent scenarios
Scenario: a single example of a scenario

instance of a use case!

Example: Use Case
“ReportFireIncident”

“ReportFireIncident”p

Scenario
“Report 
Warehouse on Fire”

Scenario
“Report Flat on Fire”

Scenario
“Report Car on Fire”

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 33



From Scenarios to use cases
Relationship of eventsp

Use case: abstract events
Scenario: concrete events

Use Case
“ReportFireIncident”

Scenario
“Report Car on Fire” Derivation of Use 

Cases from 
• concrete event a

• concrete event b
• abstract event A

• abstract event B

Scenarios by 
abstraction

….

• concrete event x
….

• abstract event X

Example: Example:

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 34

a p e
“Bob enters data of the flat”

Example:
“Fireman enters data of object”



How to create a use case from a set of 
scenarios? (1/7)

Start with an arbitrary chosen scenario. 
Identify the actors taking part in it. 

An actor is an abstraction of (or role assumed by) concrete persons, 
a subject or entitiesa subject or entities. 
Example: “Bob" can be seen as an instance of an actor named 
“Fireman“
Id tif th t th t i iti t th (" i " t )Identify the actor that initiates the use case ("primary" actor) 

inspect substantives!
Identify the "secondary" actors, who typically react to the system y y yp y y
rather than taking initiative themselves. 

Create a new Use Case bubble and Symbols for all involvedCreate a new Use Case bubble and Symbols for all involved 
Actors. Connect each of the actors with the use case. 

For primary actors: annotate them with <<initiates>> 

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 35

p y



How to create a use case from a set of 
scenarios? (2/7)

Write down the flow of events of the use case. For the first 
i d i i hi i l & iscenario under inspection, this is mostly a copy&paste operation: 

Take the events of the scenarios, replace references to concrete 
concepts with abstractions:concepts with abstractions:

Person names (e.g. “Bob” “User”)
Attributes (e.g. skip “on the road to home”)
Locations (e.g. “Flat” “Fireplace”)
Job specifications (e.g. “Enter data with a Palm PDA OS 4.0” 
“Enter data with a user terminal”)Enter data with a user terminal )

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 36



How to create a use case from a set of 
scenarios? (3/7)

As long as there are scenarios remaining, repeat the following: 
Pick a scenario that is not dealed with yetPick a scenario that is not dealed with yet. 
If the scenario is exactly an instance of one of the use cases in your 
current model, you can just skip it

Use Case
“aUseCase”

Scenario
“aScenario” aUseCase

• concrete event a
aScenario

• abstract event Ais part of 
(can be represented by)

is part of• concrete event b
….

• concrete event x

• abstract event B
….

• abstract event X

is part of 
(can be represented by)

is part of 
(can be represented by)

If there is no matching, then create a new use case

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 37



How to create a use case from a set of 
scenarios? (4/7)

Update the use case if there are some incompatible events
Some concrete Event cannot be represented by an abstract event
The number of concrete events does not fit the number of abstract 
eventsevents

Use Case
“aUseCase”

Scenario
“aScenario”

is part of 
• concrete event a

• concrete event b

• abstract event A

• abstract event B

p
(can be represented by)

is part of 
(can be represented by)

….

• concrete event y

….

• abstract event Xis not part of 
(cannot be represented by)

(can be represented by)

What to do? (Suggestions: Include an abstract Use Case, Describe 
an generalized Use Case, Let two Use Cases extend this Use Case)

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 38



How to create a use case from a set of 
scenarios? (5/7)

If you detect (partial) scenarios that can be potentially shared by 
i l d h ( )many use case, include them (reuse):

Use Case
“S li ”

Scenario Use Case
“ B U C ”“Supplier”

• concrete event a
“aScenario”

• abstract event A

“aBaseUseCase”

• abstract event K

• INCLUDE Supplier

is part of 
(can be represented by)

• concrete event x • abstract event X • abstract event L

Use Case
“aBaseUseCase”

Use Case
“Supplier”

<<include>>

Use Case

<<include>>

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 39

Use Case
“anotherBaseUseCase”



How to create a use case from a set of 
scenarios? (6/7)

If you think the new scenario represents optional or exceptional 
b h i i d i i i h fl f h i i lbehavior, introduce an extension point in the flow of the original 
use case, and add the diverging behavior as an extension: 

Use Case
“Supplier”

• concrete event a

Scenario
“aScenario”

• abstract event A
is part of 

(can be represented by)

Use Case
“aBaseUseCase”

• abstract event K

• SKIP remaining 
events in case of 
an exception

• SKIP remaining
events

• EP “Exception”

• abstract event L

Use Case
“aBaseUseCase”

EP: Exception
Use Case
“Supplier”

<<extend>>
(Exception) p

<<extend>> (Exception)

Use Case

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 40

“anotherBaseUseCase”
EP: Exception



How to create a use case from a set of 
scenarios? (7/7)

Some more Pseudo Codes can be used in textual use cases:
INCLUDE <use case name>
SKIP <events>
REPEAT n times (subsequence)REPEAT n times (subsequence)
EP-Cross <extension point name> (denotes that this extension 
point is valid throughout the next events)
IF <condition> THEN <events> ELSE <events>
INHERIT <events>
OVERIDE <e ent> <ne E ent>OVERIDE <event> <newEvent>

Further Heuristics can be applied:Further Heuristics can be applied:
Number of use cases should moderate
Avoid a functional decomposition of the system (too detailed)

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 41



Scenarios:
Possible questions in an interviewq

What are the primary tasks that the system needs to perform?
How do you currently perform your primary task?How do you currently perform your primary task?
Do you know about any kind of system or service that already fulfills 
some task?
What data will the (main) actor create, store, change, remove or add 
in the system?
Are there other actors in the system (explain the term actor!)Are there other actors in the system (explain the term actor!)
Do the actors need assistance during carrying out their tasks?
What external changes does the system need to know about?What external changes does the system need to know about?
What changes or events will the actor of the system need to be 
informed about?
What kind of exceptions can you suggest?
Can actors interrupt a sequence of interaction? What happens, if so?
Wh t b t t di t d t k ?

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 42

What about extra-ordinary events and tasks?



Summary 
(Requirements Elicitation Overview)( q )

The goal of this phase is a model representing the requirementsThe goal of this phase is a model representing the requirements 
of the system seen from the user‘s perspective
First steps are:p

Write the Problem Statement
Elicit Requirements (with Interviews, task observation)

First step of elicitation is understanding scenarios
C lid h li f i b b iConsolidate the list of scenarios by abstracting use cases

Requirements elicitation is a cyclic processRequirements elicitation is a cyclic process

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 43



Upcoming Lecture, WS08: ATSC 
(Advanced Topics in Software Construction)( p )

Prof Dr Armin B Cremers Daniel Speicher Tobias RhoProf. Dr. Armin B. Cremers, Daniel Speicher, Tobias Rho
Number of ECTS Credits: 4, Typ/SWS: V2/Ü1
Methodologies and crafts supporting the following factors:Methodologies and crafts supporting the following factors:

Quality of requirements
Seamless translation of requirements into design
Choice of a flexible architecture
Selection of an appropriate process 

h l i h h h hFocus on the conceptual consistency through the process phases.
=> First introduction to some of the latest technologies 

Model driven architectureModel driven architecture
Product lines
Aspect-oriented software

Armin B. Cremers, Tobias Rho, Daniel Speicher, Holger Mügge (based on Bruegge & Dutoit) Object-Oriented Software Construction 44


