
Chapter 13: Testing - 1

Obj t O i t dObject-Oriented

SoftwareConstruction

Armin B. Cremers, Dr. Sascha Alda & Tobias Rho,
(based on Bruegge & Dutoit)

Software Lifecycle Activities...and their models

System
Design

Object
Design

Implemen-
tation TestingRequirements

Elicitation Analysis

Expressed in
Terms of

Structured
by

Realized
by

Implemented
by

Verified
by

class...
class...

by y

Sub-

class...
class...

Source
Solution
Domain

Application
Domain Test

?
class....?

Use Case

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 2

Sub-
systems

Source
Code

Domain
Objects

Domain
Objects

Test
Cases

Use Case
Model

Testing

♦ Testing is the process of finding differences between the
d b h i ifi d b d l d hexpected behavior specified by system models and the

observed behavior of the implemented system

♦ Goal: Design tests that exercise defects in the system and
to reveal problemsto reveal problems

♦ Contrary to all other activities like analysis design or♦ Contrary to all other activities like analysis, design or
implementation: testing is not constructive
Design: avoid making faultsg g
A successful test is a test that identifies faults

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 3

Testing (ctd.)

♦ Alternative Definition: Testing has to demonstrate that
f l llfaults are not present at all.
♦ Almost impossible to show
♦ May lead to the selection of test data that have a low probability♦ May lead to the selection of test data that have a low probability

of causing the program to fail

♦ Many definition of “errors” can be found …

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 4

Terminology

♦ Fault (Bug): A design or coding mistake that may cause
abnormal component behaviorabnormal component behavior.

Algorithmic fault: caused by wrong implementation of the
specification (mostly due to bad communication)
Mechanical fault: due to external circumstances

♦ Error: The system is in a state such that further
processing by the system will lead to a failureprocessing by the system will lead to a failure.

♦ Failure: Any perceivable deviation of the observed
behavior from the specified behavior.

♦ There are many different ways how we can deal with
these types of errors.

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 5

Examples of Faults and Errors

♦ Faults in the Interface
specification

♦ Mechanical Faults
specification

Mismatch between what the
client needs and what the

ff

very hard to find
Documentation does not
describe actual conditions of

server offers
Mismatch between
requirements and
i l t ti

environment

♦ Errorsimplementation

♦ Algorithmic Faults

♦ Errors
Stress or overload errors
Capacity or boundary errors♦ Algorithmic Faults

Missing initialization
Missing test for null or 0

Timing errors
Throughput or performance
errorserrors

How do we deal with Errors and Faults?

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 6

How do we deal with Errors and Faults?

Dealing with Errors

♦ Verification
Formal proof of correctnessFormal proof of correctness.
Assumes hypothetical environment that does not match real
environment
Proof might be buggy (omits important constraints; may be
simply wrong)

♦ Declaring a bug to be a “feature”♦ Declaring a bug to be a feature
Bad practice

♦ Patching♦ Patching
Rather quick and dirty…

♦ Testing (this lecture)♦ Testing (this lecture)
Testing is never good enough
Define Test Cases even during all stages in order to detect faults

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 7

g g

Test Cases

♦ Test Case: set of input data and expected results that
i i h h f iexercise a component with the purpose of causing

failures and detecting faults
Test cases can have relationships:♦ Test cases can have relationships:

T4: TestCase

T1: TestCase

T5: TestCase

T2 T tC T3 T tC

precedes precedes

E d l i ll d T t O l

T2: TestCase T3: TestCase

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 8

♦ Expected results are sometimes called Test Oracle.

Test Stubs and Drivers

♦ Test Driver: simulates the part of the system that calls
h d (CUT)the component under test (CUT)

♦ Test Stub (or Mock): simulates component that are
called by the tested componentcalled by the tested component

Must provide the same API as the intended component
Not always a trivial taskNot always a trivial task

m1: TestStubuse

aClass: MyClassd2: TestDriver
calls

m2: TestStubuse

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 9

Corrections

♦ A Correction is a change to a component whose purpose
i i f lis to repair a fault.

Range from simple modification to a single component, to a
complete redesign of data structures or a subsystemcomplete redesign of data structures or a subsystem

♦ The likelihood that the developer introduces new faults
into the revised component is high. Techniques to handle p g q
such faults:

Configuration Management
i l (i f h i l fRationale Management (Documentation of the rationale for

the change)

♦ “Detecting and fixing one bug naturally causes five new
bugs..” (Source: unknown, ~Fragility, R.C. Martin)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 10

g (, g y,)

Model elements used during test

Test SuiteTest Suite

* * 1..n
is revised by/exercises

Test Case Component Correction

*

* *

*

1..n

Test Stub*
finds

Test Driver*

*

Error FaultFailure * * *

is caused by is caused by

*

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 11

The software testing process

Test Test
d t

Test
lt

Test
t

Design test
cases

Prepare test
data

Run program
with test da ta

Compare results
to test cases

cases data results reports

cases data with test da ta to test cases

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 12

Testing takes creativity

♦ To develop an effective test, one must have:
Detailed understanding of the system
Knowledge of the testing techniques
Skill to apply these techniques in an effective and efficientSkill to apply these techniques in an effective and efficient
manner

♦ Testing is done best by independent testers
Developers often develop a mental attitude that the program
should behave in a certain way when in fact it does not.
Programmer often stick to the data sets that makes theProgrammer often stick to the data sets that makes the
program work

♦ A program often does not work when first tried by p g y
somebody else.

Don't let this be the end-user or client.

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 13

Types of Testing

♦ Unit Testing: today

Individual subsystem
Carried out by developers (of components)
G l C fi h b i l d d d iGoal: Confirm that subsystems is correctly coded and carries
out the intended functionality

♦ Integration Testing:♦ Integration Testing:
Groups of subsystems (collection of classes) and eventually
the entire system
Carried out by developers
Goal: Test the interface among the subsystem

♦ Implementation (Coding) and testing go hand in hand

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 14

Types of Testing

♦ System Testing:
The entire system
Carried out by test team
G l i if h h iGoal: Determine if the system meets the requirements
(functional and global)
Functional Testing: Test of functional requirementsFunctional Testing: Test of functional requirements
Performance Testing: Test of non-functional requirements

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 15

Types of Testing

♦ Acceptance and Installation Testing:
Evaluates the system delivered by developers
Carried out by the client.
G l h hGoal: Demonstrate that the system meets customer
requirements and is ready to use

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 16

Unit Testing

♦ Focus on the building blocks of the software: objects and
b B fisubsystems. Benefits:
Reduction on complexity of overall test activities
Makes it easy to detect and correct faultsMakes it easy to detect and correct faults
Write test once and use it to find errors many times

♦ All objects developed during development can be
involved

Often not feasible (and necessary)
Minimal set: participating objects of analysis phase (In order
f i t E titi C t ll d b B d i)of importance: Entities, Controller, and maybe Boundaries)

Subsystem should be tested after all objects within the
subsystem have been tested individually

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 18

y y

Unit Testing

♦ Static Analysis:♦ Static Analysis:
Code Review: Reading the source code
Walkthrough (Informal presentation of code and API to review g (p
team)
Inspection (No involvement of developers)
A t t d T l h ki fAutomated Tools checking for

syntactic errors, coding standards

♦ Dynamic Analysis:♦ Dynamic Analysis:
Black-box testing (Test the input/output behavior)
White-box testing (Test the internal logic of the subsystem orWhite box testing (Test the internal logic of the subsystem or
object)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 19

OBlack BoxIN OUT

Test Data
Expected Data

Actual Data

Ideally: All possible value
Unmanagable! To expensive!
=> Equivalence classes

Comparison of expected
and actual data

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 20

=> Equivalence classes and actual data

Equivalence Classes, Examples

♦ Square Root
Negative, Zero, Positive; Natural, Rational, Irrational root
Test data = {-16, 0, 25, 16/25, 7}
E t d R lt {4 0 5 0 8 2 64575131}Expected Result = {4, 0, 5, 0.8, 2.64575131}

G t t C Di i♦ Greatest Common Divisor
(1,a), (a,a), (p,q),
(p*a p) (a*p a*q) (p*q r*s)(p*a, p), (a*p, a*q), (p*q, r*s)
Test data =
{(1, 8), (23, 23), (7, 11), (22, 11), (14, 22), (3*7, 11*2)}
Expected Result = {1, 23, 1, 11, 2, 1}

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 21

Black-Box Testing

♦ Focus: I/O behavior. If for any given input we can predict
h h h d l hthe output, then the module passes the test.

Do not deal with the internal aspects of the tested component
Almost always impossible to generate all possible inputsAlmost always impossible to generate all possible inputs

♦ Goal: Reduce number of test cases
Method: Equivalence Testing♦ Method: Equivalence Testing

Divide input conditions into equivalence classes
Choose test cases for each equivalence class (Example: If anChoose test cases for each equivalence class. (Example: If an
object is supposed to accept a negative number, testing one
negative number is enough)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 22

Black-Box Testing (Continued)

♦ Boundary testing:
Focus on the conditions at the boundary (edges) of the y (g)
equivalence classes
Select test cases from 3 equivalence classes:

Below the range (e g 0 null)Below the range (e.g. 0, null)
Within the range (any number of String)
Above the range (huge number of big Strings)

d (♦ Disadvantage (Equivalence and Boundary Testing):
Do not explore combinations of test input data
Often a combination of certain values causes the erroneousOften, a combination of certain values causes the erroneous
state

♦ Another solution to select only a limited amount of test
ecases:
Get knowledge about the inner workings of the unit being
tested => white-box testing

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 23

White-Box Testing

♦ Focus on the internal structure of the component.
♦ Goal: each state in dynamic model of an object and each

interaction among the objects should be tested.
♦ Four quality metrics for white-box testing:

Statement Coverage
Is each statement exercised (covered) by a test?Is each statement exercised (covered) by a test?

Loop Coverage
Is each loop body executed zero times, exactly once, and moreIs each loop body executed zero times, exactly once, and more
than once (consecutively)?

Branch Coverage
I h ibl t f d i i d?Is each possible outcome of an decision covered?

Path Coverage
Is each possible path covered?

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 24

Is each possible path covered?

White-Box Testing
Path Testingg

♦ Assumption: by exercising all paths through a code, most
f lt ill t i f ilfaults will trigger failures

♦ Make sure all paths in the program are executed
M k h h ibl f di i i♦ Make sure that each possible outcome from a condition is
tested at least once

if (i == TRUE) out writeln("YES");if (i == TRUE) out.writeln(YES);
else out.writeln("NO");

Test cases: 1) i = TRUE; 2) i = FALSE

♦ Starting Point for more complex code fragments: flow
graphs

N d bl bl kNodes: executable blocks
Association: representing decision statement (if, while)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 25

White-Box Testing Example

FindMean (FILE ScoreFile)
{ float SumOfScores = 0.0;

i b OfS 0int NumberOfScores = 0;
float Mean=0.0; float Score;
Read(ScoreFile, Score);
hile !EOF(Sco eFile) {while !EOF(ScoreFile) {

if (Score > 0.0) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;NumberOfScores++;
}

Read(ScoreFile, Score);Read(ScoreFile, Score);
}
/* Compute the mean and print the result */
if (NumberOfScores > 0) {() {

Mean = SumOfScores / NumberOfScores;
printf(“ The mean score is %f\n”, Mean);

} else

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 26

printf (“No scores found in file\n”);
}

White-Box Testing Example:
Determining the Pathsg

FindMean (FILE ScoreFile)
{ float SumOfScores = 0.0;

int NumberOfScores = 0;
float Mean=0.0; float Score;
Read(ScoreFile, Score);
hil !EOF(S Fil) {

1

while !EOF(ScoreFile) {
if (Score > 0.0) {

SumOfScores = SumOfScores + Score;
NumberOfScores++;

3

4

2
3

NumberOfScores++;
}

Read(ScoreFile Score);

5

6Read(ScoreFile, Score);
}
/* Compute the mean and print the result */
if (NumberOfScores > 0) {7

6

7 if (NumberOfScores > 0) {
Mean = SumOfScores / NumberOfScores;
printf(“ The mean score is %f\n”, Mean);

} else

7

8

7

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 27

}
printf (“No scores found in file\n”);

}
9

Constructing the Logic Flow Diagram

Start

2

1

F
2

3
T

4 5

6

T F

6

7
T F

8 9

Exit

T F

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 28

Exit

Finding the Test Cases

♦ Design test cases so that each transition in the activity diagram is
traversed at least once

select input for true and false branch

Start

1

select input for true and false branch

2

1
a (Covered by any data)

3

5

b

d e
c

(Data set must contain at least
one value)(Positive score) (Negative score)

4 5

6
gf h

c
(Data set must

be empty)
(Reached if either f or
e is reached)

7

8 9
i j (Total score > 0.0)(Total score < 0.0)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 29
Exit

k l

Unit Testing in Java

♦ (Trivial) Testing of single Objects:
Build up Test Cases by means of additional main() method
that invokes individual methods.
Use of System out println() command to check valuesUse of System.out.println() command to check values
Advantages:

Very easy to use and inserty y
Disadvantages:

♦ Annoying code in the business code
♦ Too many unnecessary outputs
♦ Test code is interweaved with business code (no portability)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 30

Testing in Java JUnit

♦ De facto standard Java framework for unit (object)
t titesting

♦ Realization of real TestCases and TestSuites
T C il bl h i♦ TestCases are easily portable to other units

♦ Separation of test code and business code of object
♦ Integrated nicely with existing IDEs like Eclipse

♦ Use of arbitrary assertions to evaluate values

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 31

JUnit Design

TestAssert

TestCase TestSuiteTestResult TestCase TestSuiteTestResult

MyTestCase

MyClassUnderTest

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 32

y

MyCode

JUnit Design - Pattern dense

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 33

http://junit.sourceforge.net/doc/cookstour/cookstour.htm

JUnit Rules and Conventions

♦ Subclass TestCase
♦ Test methods

public void testXXX() [throws …]
Any number of assertions per method

♦ Optionally add setUp / tearDown methods
Instantiating (auxiliary) objects
N t k tNetwork setups
Integration of Mock-Up Objects (Test Stubs)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 34

Example Code

package org.example.antbook.common;

public class SearchUtil {

public static final Document[]public static final Document[]
findDocuments(String queryString)

throws SearchQueryException,
S t E ti {SystemException {

Document[] results = new Document[1];
return results;

}
}

Test hat is the si e of es lts?♦ Test: what is the size of results?
♦ Does the method really returns a document?

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 35

An example unit test

package org.example.antbook.common;

import junit.framework.TestCase;

public class SearchUtilTest extends TestCase {public class SearchUtilTest extends TestCase {

public void testSearch() throws Exception {
// i ht API?// right API?
Document[] docs =

SearchUtil.findDocuments("erik");

assertTrue(docs.length > 0);
}

}

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 36

JUnit Assertions

♦ assertTrue(boolean condition)
assertFalse(boolean condition)assertFalse(boolean condition)

♦ assertEquals(Object expected, Object actual)
Uses equals() comparison (check whether two object have the same content)

♦ assertSame(Object expected, Object actual)
assertNotSame(Object expected Object actual)assertNotSame(Object expected, Object actual)

Uses == comparison (check if two objects refer to the same object)

♦ assertEquals(float expected float actual float tolerance)♦ assertEquals(float expected, float actual, float tolerance)

♦ assertNull(Object o)
assertNotNull(Object o)assertNotNull(Object o)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 37

Test Runners

♦ Execute unit test via command line:
java junit USERINTERFACE TestRunner classfilejava junit.USERINTERFACE.TestRunner classfile

♦ The UserInterface package prescribes the output style for the computed
result: It can hold one of the following values:result: It can hold one of the following values:

textui (textual representation of the result)

> java junit textui TestRunner SearchUtilTest> java junit.textui.TestRunner SearchUtilTest

>
> Time: 0
> OK (1 tests)

SwingUI (graphical representation using Swing components)SwingUI (graphical representation using Swing components)
AwtUI (graphical representation using Awt components)

♦ Better: Use Eclipse

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 38

♦ Better: Use Eclipse …

JUnit in Eclipse

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 39

JUnit in Eclipse

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 40

Lifecycle Methods

package org.example.antbook.ant.lucene;

import java.io.IOException;p j p ;
import junit.framework.TestCase;

public class HtmlDocumentTest extends TestCase
{{

HtmlDocument doc;

public void setUp() throws IOException {p p() p {
doc = new HtmlDocument(getFile("test.html"));

}

bli id t tD () {public void testDoc() {
assertEquals("Title", "Test Title", doc.getTitle());
assertEquals("Body", "This is some test", doc.getBodyText());

}}

public void tearDown() {
doc = null;

}

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 41

}
}

TestCase lifecycle

1. setUp
2. testXXX()
3. tearDown()
4. Repeats 1 through 3 for each testXXX method…

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 42

Test Suites

package org.example.antbook;

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;p j ;

public class AllTests {

Use of
Reflection

public static void main(String[] args) {
junit.textui.TestRunner.run(AllTests.class);

}}
public static public Test suite() {

TestSuite suite = new TestSuite();
it dd tS it (Si l t l)suite.addTestSuite(SimpleTest.class);

suite.addTestSuite(HtmlDocumentTest.class);
return suite;

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 43

}
}

JUnit Best Practices

♦ Separate business and test code
♦ But typically in the same packages
♦ Compile into separate trees, allowing deployment

i hwithout tests
♦ Don’t forget OO techniques

♦ Test-driven development
f l f1. Write failing test first

2. Write enough code to pass
3. Refactor code3. Refactor code
4. Run tests again
5. Repeat until software meets goal

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 44

Summary

♦ Testing still needs intuition, but many rules and heuristics
il blare available

♦ Testing consists of component-testing (unit testing,
integration testing) and system testingintegration testing) and system testing

♦ Design Patterns can be used for integration testing
♦ Testing has its own lifecycle♦ Testing has its own lifecycle

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 46

