Chapter 13: Testing - 1

Object—Oriented

Software .
Constructlon

Armin B. Cremers, Dr. Sascha Alda & Tobias Rho
(based on Bruegge & Dutoit)

Software Lifecycle A(:tivities___an 4 their mod b-|’[

Requirements Analvsis System Object Implemen- Testin
Elicitation y Design Design tation g
O—F

NS

Expressed in Structured Realized Implemented Verified

Terms of by by by by
= class... v
— > ? —_— 1? class... B VvV
B é class... a ?
. .) class....?

Application Solution

Use Case Domain Sub- Domain Source Test

Model Objects systems Objects Code Cases

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 2

Testing

+ Testing is the process of finding differences between the
expected behavior specified by system models and the
observed behavior of the implemented system

+ Goal: Design tests that exercise defects in the system and
to reveal problems

+ Contrary to all other activities like ana
|mplementat|on testlng IS not constru
-> Design: avoid making faults

- A successful test Is a test that identifies faults

ctive

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 3

Testing (ctd.)

+ Alternative Definition: Testing has to demonstrate that
faults are not present at all.

+ Almost impossible to show

+ May lead to the selection of test data that have a low probability
of causing the program to fail

+ Many definition of “errors” can be found ...

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 4

Terminology

+ Fault (Bug): A design or coding mistake that may cause
abnormal component behavior.

¢ Algorithmic fault: caused by wrong implementation of the
specification (mostly due to bad communication)

+* Mechanical fault: due to external circumstances

+ Error: The system is in a state such that further
processing by the system will lead to a failure.

+ Failure: Any perceivable deviation of the observed
behavior from the specified behavior.

+ There are many different ways how we can deal with
these types of errors.

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 5

Examples of Faults and Errors

+ Faults in the Interface + Mechanical Faults
specification + very hard to find
* Mismatch between what the + Documentation does not
client needs and what the describe actual conditions of
server offers environment

¢ Mismatch between
requirements and

implementation + Errors
+ Stress or overload errors
+ Algorithmic Faults ¢ Capacity or boundary errors
+ Missing initialization + Timing errors
+ Missing test for null or O * Throughput or performance
errors

=2 How do we deal with Errors and Faults?

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 6

Dealing with Errors -|’[

+ Verification
+ Formal proof of correctness.

+ Assumes hypothetical environment that does not match real
environment

+ Proof might be buggy (omits important constraints; may be
simply wrong)

+ Declaring a bug to be a “feature”
+ Bad practice ®

+ Patching
+ Rather quick and dirty...

+ Testing (this lecture)
¢ Testing is never good enough
+ Define Test Cases even during all stages in order to detect faults

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 7

Test Cases

+ Test Case: set of input data and expected results that
exercise a component with the purpose of causing
failures and detecting faults

+ Test cases can have relationships:

T4: TestCase

T1: TestCase K>r———

precedes precedes
T5: TestCase

T2: TestCase T3: TestCase

+ Expected results are sometimes called Test Oracle.

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 8

Test Stubs and Drivers

+ Test Driver: simulates the part of the system that calls
the component under test (CUT)

+ Test Stub (or Mock): simulates component that are
called by the tested component
+ Must provide the same API as the intended component

+ Not always a trivial task

use m1: TestStub

. calls
d2: TestDriver ———{ aClass: MyClass

use m2: TestStub

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 9

Corrections

+ A Correction is a change to a component whose purpose
IS to repair a fault.

+ Range from simple modification to a single component, to a
complete redesign of data structures or a subsystem

+ The likelihood that the developer introduces new faults
Into the revised component is high. Techniques to handle
such faults:

¢ Configuration Management

+ Rationale Management (Documentation of the rationale for
the change)

+ “Detecting and fixing one bug naturally causes five new
bugs..” (Source: unknown, ~Fragility, R.C. Martin)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 10

Model elements used during test

Test Suite
/exercises IS revised by
* * | 11..n [|
Test Case Component Correction
x| > ? \ *
=| Test Stub
finds
~| Test Driver
Failure [& = Error * * Fault
Is caused by is caused by

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 11

The software testing process

Test Test
results reports

Test Test
3 cases ‘ . data ‘ 3

Design test Prepare test Run program
cases data with test data

|

Compare results
to test cases

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 12

Testing takes creativity

+ To develop an effective test, one must have:
+ Detailed understanding of the system
+ Knowledge of the testing techniques

+ Skill to apply these techniques in an effective and efficient
manner

+ Testing is done best by independent testers

+ Developers often develop a mental attitude that the program
should behave In a certain way when in fact it does not.

+ Programmer often stick to the data sets that makes the
program work

+ A program often does not work when first tried by
somebody else.

+ Don't let this be the end-user or client.

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 13

Types of Testing

+ Unit Testing:
¢ Individual subsystem

¢ Carried out by developers (of components)

¢ Goal: Confirm that subsystems is correctly coded and carries
out the intended functionality

+ Integration Testing:

* Groups of subsystems (collection of classes) and eventually
the entire system

¢ Carried out by developers
¢ Goal: Test the interface among the subsystem

+ Implementation (Coding) and testing go hand in hand

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 14

Types of Testing

+ System Testing:
+ The entire system
¢ Carried out by test team

¢ Goal: Determine if the system meets the requirements
(functional and global)

+ Functional Testing: Test of functional requirements
+ Performance Testing: Test of non-functional requirements

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 15

Types of Testing

+ Acceptance and Installation Testing:
+ Evaluates the system delivered by developers
¢ Carried out by the client.

¢ Goal: Demonstrate that the system meets customer
requirements and is ready to use

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction

16

Unit Testing

+ Focus on the building blocks of the software: objects and
subsystems. Benefits:

+ Reduction on complexity of overall test activities
+ Makes it easy to detect and correct faults
+ Write test once and use it to find errors many times

+ All objects developed during development can be
Involved

+ Often not feasible (and necessary)

+ Minimal set: participating objects of analysis phase (In order
of importance: Entities, Controller, and maybe Boundaries)

+ Subsystem should be tested after all objects within the
subsystem have been tested individually

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 18

Unit Testing

+ Static Analysis:
+ Code Review: Reading the source code

+ Walkthrough (Informal presentation of code and API to review
team)

¢+ Inspection (No involvement of developers)
+ Automated Tools checking for
+ syntactic errors, coding standards
+ Dynamic Analysis:
+ Black-box testing (Test the input/output behavior)

* White-box testing (Test the internal logic of the subsystem or
object)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 19

IN Black Box

OouT

Test Data

Ideally: All possible value
Unmanagable! To expensive!
== Equivalence classes

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit)

Expected Data

Actual Data

Comparison of expected
and actual data

Object-Oriented Software Construction 20

Equivalence Classes, Examples

+ Square Root
* Negative, Zero, Positive; Natural, Rational, Irrational root
¢ Test data = {-16, O, 25, 16/25, 7}
¢ Expected Result = {4, 0, 5, 0.8, 2.64575131}

+ Greatest Common Divisor

* (1,a), (a,a), (p,9),
* (p*a, p), (@*p, a*q), (p*q, r*s)

¢ Test data =
{(1, 8), (23, 23), (7, 11), (22, 11), (14, 22), (3*7, 11*2)}

¢ Expected Result = {1, 23, 1, 11, 2, 1}

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 21

Black-Box Testing

+ Focus: 1/0 behavior. If for any given input we can predict
the output, then the module passes the test.

+ Do not deal with the internal aspects of the tested component
+ Almost always impossible to generate all possible inputs

+ Goal: Reduce number of test cases

+ Method: Equivalence Testing
+ Divide input conditions into equivalence classes

+ Choose test cases for each equivalence class. (Example: If an
object is supposed to accept a negative number, testing one
negative number is enough)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 22

Black-Box Testing (Continued)

+ Boundary testing:

+ Focus on the conditions at the boundary (edges) of the
eqguivalence classes

+ Select test cases from 3 equivalence classes:
+ Below the range (e.g. 0, null)
+ Within the range (any number of String)
+ Above the range (huge number of big Strings)
+ Disadvantage (Equivalence and Boundary Testing):
+ Do not explore combinations of test input data

+ Often, a combination of certain values causes the erroneous
state

+ Another solution to select only a limited amount of test
cases:

+ Get knowledge about the inner workings of the unit being
tested => white-box testing

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 23

White-Box Testing

+ Focus on the internal structure of the component.

+ Goal: each state in dynamic model of an object and each
Interaction among the objects should be tested.

+ Four quality metrics for white-box testing:
+ Statement Coverage
+ Is each statement exercised (covered) by a test?

+ Loop Coverage

+ Is each loop body executed zero times, exactly once, and more
than once (consecutively)?

+ Branch Coverage
+ Is each possible outcome of an decision covered?

+ Path Coverage
+ Is each possible path covered?

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 24

White-Box Testing b't
Path Testing |

+ Assumption: by exercising all paths through a code, most
faults will trigger failures

+ Make sure all paths in the program are executed

+ Make sure that each possible outcome from a condition is
tested at least once

*if (i == TRUE) out.writeIn("YES");
else out.writelIn(’'NO");

¢ Test cases: 1) i = TRUE; 2) i = FALSE
+ Starting Point for more complex code fragments: flow
graphs
* Nodes: executable blocks
+ Association: representing decision statement (if, while)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 25

White-Box Testing Example

FindMean (FILE ScoreFile)
{ float SumOfScores = 0.0;
Int NumberOfScores = O;
float Mean=0.0; float Score;
Read(ScoreFile, Score);
while TEOF(ScoreFile) {
IT (Score > 0.0) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;

}

Read(ScoreFile, Score);

+

/* Compute the mean and print the result */

IT (NumberOfScores > 0) {
Mean = SumOfScores / NumberOfScores;
printf(*“ The mean score i1s %f\n”, Mean);

1 else
printf (““No scores found In file\n”);

}

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 26

White-Box Testing Example:
Determining the Paths

FindMean (FILE ScoreFile)
{| float SumOfScores = 0.0;
Int NumberOfScores = O; <i>
float Mean=0.0; float Score;
Read(ScoreFile, Score);
<:>while 1EOF(ScoreFile) {
<:>if=(Score > 0.0) {
SumOfScores = SumOfScores + Score;*_<:>
NumberOfScores++;

Crnro) - @
OLUI Ty, |e

/* Compute the mean and print the result */
<:>if (NumberOfScores > 0) {
Mean = SumOfScores / NumberOfScores;
printf(*“ The mean score i1s %f\n”’, Mean); <§>

A

A

} else

printf (“No scores found in file\n”);}—(9)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 27

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 28

Finding the Test Cases

+ Design test cases so that each transition in the activity diagram is
traversed at least once

+ select input for true and false branch
@
a (Covered by any data)
/\
2 >
b (Data set must contain at least

(Positive Z?/<g>\e(g§gaﬂve score) one value)
5t

C
(Data set mu

h (Reached if either f or
be empty) f g (e

e is reached)

. V4 :
(Total score < 0.0) X\/>] (Total score > 0.0)
% %/l
Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Object-Oriented Software Construction 29

Unit Testing Iin Java

+ (Trivial) Testing of single Objects:

+ Build up Test Cases by means of additional main() method
that invokes individual methods.

* Use of System.out.printin() command to check values
¢ Advantages:
+ Very easy to use and insert
+ Disadvantages:
+ Annoying code in the business code
+ TooO many unnecessary outputs
+ Test code is interweaved with business code (no portability)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 30

Testing In Java JUnit

+ De facto standard Java framework for unit (object)
testing

+ Realization of real TestCases and TestSuites

+ TestCases are easily portable to other units

+ Separation of test code and business code of object
+ Integrated nicely with existing IDEs like Eclipse

+ Use of arbitrary assertions to evaluate values

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 31

Junit Design

Assert Test <€
. k
TestResult K- — — - TestCase TestSuite Ko—

l <>| MyTestCase

MyClassUnderTest

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 32

JUunit Design - Pattern dense

Command

Template Method

TestRes ult

Test

Composite:Component

runf TestReaull) <

Tesilase

TestSuite

Composite

Collecting Parameter

runi{TestResult)

runtest)
setlipf]
tearlow hf]

runiTestResult)
addlest(Test)

Composite: Leaf

flests

thiz e

Pluggable Selector

T

runTest()

http://junit.sourceforge.net/doc/cookstour/cookstour.htm

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit)

Object-Oriented Software Construction 33

Junit Rules and Conventions

+ Subclass TestCase

+ Test methods
¢ public void testXXX() [throws ..]

+ Any number of assertions per method

+ Optionally add setUp / tearDown methods
+ [Instantiating (auxiliary) objects
+ Network setups
+ Integration of Mock-Up Objects (Test Stubs)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 34

Example Code

package org.example.antbook.common;
public class Searchutil {

public static final Document[]
findDocuments(String queryString)
throws SearchQueryException,
SystemException {
Document]] results = new Document|[1];
return results;

}

+ Test: what is the size of results?
+ Does the method really returns a document?

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 35

An example unit test

package org.example.antbook.common;
import junit.framework.TestCase;
public class SearchUtilTest extends TestCase {
public void testSearch() throws Exception {
// right API?
Document|] docs =

Searchutil.findDocuments("erik");

assertTrue(docs.length > 0);

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 36

Junit Assertions

+ assertTrue(boolean condition)
assertFalse(boolean condition)

+ asserteEquals(Object expected, Object actual)
* Uses equals() comparison (check whether two object have the same content)

+ assertSame(Object expected, Object actual)
assertNotSame(Object expected, Object actual)

+ Uses == comparison (check if two objects refer to the same object)
+ asserteEquals(float expected, float actual, float tolerance)

+ assertNull(Object 0)
assertNotNull(Object o)

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 37

Test Runners

+ Execute unit test via command line:
java Junit.USERINTERFACE.TestRunner classfile

+ The UserlInterface package prescribes the output style for the computed
result: It can hold one of the following values:

* textui (textual representation of the result)

> java junit._textuil.TestRunner SearchUtilTest

>
> Time: O
> 0K (1 tests)

+ SwingUI (graphical representation using Swing components)
+ AwtUI (graphical representation using Awt components)

+ Better: Use Eclipse ...

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 38

Junit in Eclipse

Java - SimpleTest.java - Eclipse Platform

B e R e

File Edit Source FRefackor Mavigate Search Project Run Window Help
I c5 - & | -0-%-|@% | BHE-|®= 5 |
KF‘an:kage Explarer | Higrarchy m = El\ r’m Wisuali, ..

m CoreTes. ..

m Test.java

[J] Skartan. ..

m Wisuali, ..

Finished after 0,031 seconds

O = | @R EE -

Runs: 2jz B Errors: 0O B Failures: 1

]
g Fallres | Herarchy|

@™ Failures | [Hisrarchy

ElEE SimpleTest

i EF_'—_| kestaimpleTest

-+ ~H

Failure Trace o

junik, framework, CompatisonFailure: expected: <. ., = buk w;
ak SimpleTest, testSkriplSimpleTest, java: 22)

at sun.reflect. MativeMethodAccessorImpl.invoke{Mative Method)

ak sun.reflect, MativemMethodaccessorImpl invokeMativeMethodacces:
at sun.reflect, DelegatingMethodaccessor Impl, invokelDelegatingMet b
at junit, Framewark, TestResulkd 1, proteck TestResulk, java: 106)

T 10010100 0 e 0

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit)

import junit.framework.TestCase:
i
¥ Created on 01.07.2005
+
* To change the template for this generated file go to
* WindowxFPreferences>JavarCode Feneration>Code and Comic

*

wpuhlic class JimpleTest extend=s TestCase |

i public SimpleTest [String nswme) {
super [name |
}
& public void test3impleTesti() {
int answer = 2:
FGesertfguals| [(1+1) , answer ;!

public void test3Itcrip(){
String exp = "hh":

gssertfgqualsiexp , "hhi™):

Object-Oriented Software Construction 39

Junit in Eclipse

=5

£~ Java - SimpleTest.java - Eclipse Platform
File Edit Source Refactor Mawvigate Search Project Fun Window Help

Ici-lagls|s%-0-@- |0% | BEH#G-|®y | 4@ |2 -4 -6 0 -

' R
Package Explarer | Hierarchy (ETI.T Uit &5 = O m Wisuali... m Wisuali... m Skartan. .. m Test.java m Care
Finished after 0,015 seconds [| Q, 2 LR - import junit.framework.TestCaze:
A
Runs: 2j2 B Errors: 0 B Failures: 0 * Created on 01.07.2005

*

| + To change the template for this generaced £ile
BE Failures |E|T=Hierarch~,.-' * WindowrPreferences>JavarCode Generation-Code at
i

|F|E| SimpleTest

wpuhlic class ZimpleTezt extend=s TeztCaze |

= public SimpleTest | String name)4
super | name)
i
= Failure Trace :::E *'E'E'
& public void test3impleTest(){
int answer = 2:
FGesertfguals| [(1+41) , answer :
K

public void tesc3crip(){
String exp = "hbkhtT:
FGesertfguals (exp "1::1::"'].:

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 40

Lifecycle Methods

package org.example.antbook.ant. lucene;

import java.io.lOException;
import junit.framework.TestCase;

public class HtmlDocumentTest extends TestCase

{

HtmIDocument doc;

public void setUp() throws I0Exception {
doc = new HtmIDocument(getFile(''test.html™));

}

publiic void testbDoc() {
asserteEquals("Title", "Test Title", doc.getTitle());
asserteEquals('Body", "This i1s some test', doc.getBodyText());

}

public void tearDown() {
doc = null;

}

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 41

TestCase lifecycle

setUp

testXXX()

tearDown()

Repeats 1 through 3 for each testXXX method...

AW N P

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 42

Test Suiltes

package org.example.antbook;

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuilte;

Use of
Reflection

public class AllTests {

public static void main(String[] args) { O
junit._textur.TestRunner.run(AllTests. class)

R |

s
public static public Test suite() {

TestSuite suite = new TestSuite();
suite.addTestSuite(SimpleTest.class);
suite.addTestSuite(HtmIDocumentTest.class);
return suite;

}

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 43

}

Junit Best Practices

+ Separate business and test code
+ But typically in the same packages

+ Compile into separate trees, allowing deployment
without tests

+ Don’t forget OO technigues

+ Test-driven development
Write failing test first

Write enough code to pass
Refactor code

Run tests again

Repeat until software meets goal

S A o

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 44

Summary

+ Testing still needs intuition, but many rules and heuristics
are available

+ Testing consists of component-testing (unit testing,
Integration testing) and system testing

+ Design Patterns can be used for integration testing
+ Testing has its own lifecycle

Armin B. Cremers, Sascha Alda & Tobias Rho (based on Bruegge & Dutoit) Object-Oriented Software Construction 46

