SDA SE Wiki

Software Engineering for Smart Data Analytics & Smart Data Analytics for Software Engineering

User Tools

Site Tools


Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
teaching:lectures:kga:2017:slides [2018/01/18 09:04]
Prof. Jens Lehmann
teaching:lectures:kga:2017:slides [2018/05/09 01:59]
127.0.0.1 external edit
Line 1: Line 1:
 +====== KGA Slides ======
 +
 +
 +<note important>​
 +Here you find an outline of the lecture (order and topics might be adopted during the semester). **Slides form last year** are linked and will be updated shortly before the upcoming class. ​
 +This page contains lecture material from last year, which will updated during the course. ​
 +</​note>​
 +
 +^  Date  ^  Chapter/​Topic ​ ^  Slides (and date of last update) ​ ^
 +|10.10.17| 01. Motivation ​ |{{:​teaching:​lectures:​kga:​2017:​01-motivation.pdf|}} |
 +|25.11.17| 02. RDF Databases |{{:​teaching:​lectures:​kga:​2016:​02-rdfdatabases.pdf|}} ​ |
 +|31.10.17| - public holiday - |       |
 +|07.11.17| 03. Property Graph Databases |{{:​teaching:​lectures:​kga:​2017:​03-propertygraphdatabases.pdf|}} |  ​
 +|14.11.17| 04. Statistical relational learning ​  ​| ​ {{:​teaching:​lectures:​kga:​2017:​04-statistcalrelationlearning.pdf|}} ​   |              ​
 +|21.11.17| 05. Tensor-Factorization methods ​  | {{:​teaching:​lectures:​kga:​2016:​05-tensors.pdf|}} | 
 +|28.11.17| 06. Alternating Least Squares and Stochastic Gradient Descent | {{:​teaching:​lectures:​kga:​2016:​06-sgd_als.pdf|}} ​   |
 +|05.12.17| | |
 +|12.12.17| 07. Introducing Neural Networks| {{:​teaching:​lectures:​kga:​2016:​07-neuralnetworks.pdf|}} ​   |
 +|19.12.17| 08. Neural Networks for KGA| {{:​teaching:​lectures:​kga:​2016:​08-nnsforkga.pdf|}} ​  ​| ​
 +|09.12.17| 09. Latent Distance and Graph Feature models | {{:​teaching:​lectures:​kga:​2016:​09-ldandgfmodels.pdf|}} ​  |
 +|16.01.18| 10. Training SRL Models | {{:​teaching:​lectures:​kga:​2016:​10-trainingsrlmodels.pdf|}} |
 +|23.01.18| 11. Markov Logic Networks | {{:​teaching:​lectures:​kga:​2016:​11-mlns.pdf|}} |
 +|30.01.18| 12. Summary |{{:​teaching:​lectures:​kga:​2016:​12-summary.pdf|}} |
 +|06.02.18|
 +
 +The Slides of the talk of our invited speaker Paul Groth can be found here:
 +^  Date  ^  Chapter/​Topic ​ ^  Slides (and date of last update) ​ ^
 +|07.02.17| Knowledge Graph Analysis in Practice |{{:​teaching:​lectures:​kga:​2016:​kg-analysis-elsevier-feb82017.pptx|}} |
  
teaching/lectures/kga/2017/slides.txt · Last modified: 2018/11/01 17:52 by Hamed Shariat Yazdi

SEWiki, © 2019