SDA SE Wiki

Software Engineering for Smart Data Analytics & Smart Data Analytics for Software Engineering

User Tools

Site Tools


Differences

This shows you the differences between two versions of the page.

Link to this comparison view

teaching:seminars:pa:2019:start [2019/03/29 12:22] (current)
Hamed Shariat Yazdi created
Line 1: Line 1:
 +{{page>​header&​nofooter}}
 +====== Predictive Analysis - Seminar SS2019 ======
 +
 +
 +<​note> ​
 +The **first session** of the PA Seminar will start at 9 April at 10:15 in Room 1.047.
 +</​note> ​
 +
 +{{page>​header&​nofooter}}
 +
 +===== General Information =====
 +
 +
 +/*
 +
 +
 +<note important> ​
 +**__Important Note:__**
 +
 +<​html><​font color=darkred></​html>​**The exercises of the KGA lecture will start at 07.11.2018.**<​html></​font></​html>​
 +
 +
 +<​html><​font color=darkblue></​html>​**Please register on the TVS system latest till 02.11.2018 and select your preferred slot for the exercises.
 +[[https://​puma.cs.uni-bonn.de|https://​puma.cs.uni-bonn.de]]
 +**<​html></​font></​html>​
 +
 +</​note> ​
 +
 +
 +===Mailing List===
 +
 +
 +<​note> ​
 +Please subscribe to the following mailing list with your uni mail address (it needs to end with **"​uni-bonn.de"​**):​
 +
 +<​html><​font color=darkred></​html>​**https://​lists.iai.uni-bonn.de/​mailman/​listinfo.cgi/​vl-kga-ws18**
 +<​html></​font></​html>​
 +</​note> ​
 +
 +/*
 +
 +/*
 +<note important> ​
 +
 +This is an important note!
 +
 +<​html><​font color=darkred></​html>​**This is an important note!**<​html></​font></​html>​
 +</​note> ​
 +*/
 +
 +
 +===Predictive Analytics - Seminar SS2019 (MA-INF 4227)===
 +
 +^Time                        | Tuesdays, 10:15 - 11:45 |
 +^Date                        | Weekly, from April 9 according to the Schedule of the Lecture (will be announced)|
 +^Place ​                      | Seminarraum 1.047 (Address: Endenicher Allee 19a, 53115 Bonn) |
 +^Language ​                   | English |
 +^Lecturer ​                   | Dr. Hamed Shariat Yazdi, Prof. Jens Lehmann |
 +
 +
 +
 +Please subscribe to the PA-Seminar mailing list under:
 +
 +http 
 + 
 +
 +===== Contents =====
 +
 +This contents will be provided in the classroom. ​
 +
 +
 +
 +===== Teaching Staff =====
 +
 +^ Who                   ^ E-mail ​               ^ Tel            ^ Office ^
 +|Dr. Hamed Shariat Yazdi  |shariat -at- cs uni-bonn de | (0228) 73-4506 | 1.066 |
 +
 +
 +
 +/*
 +<note important> ​
 +<​html><​font color=black size=3></​html>​**
 +Please note that just for the info meeting ​
 +**<​html></​font></​html> ​
 +<​html><​font color=darkred size=3></​html>​**
 +the Room has changed from A121 to A207.
 +**<​html></​font></​html>​
 +</​note>​
 +
 +
 +<note important> ​
 +
 +<​html><​font color=black></​html>​**
 +The info meeting and presentation of seminar topics will take place at:
 +**<​html></​font></​html>​
 +
 +<​html><​font color=darkred></​html>​**
 +Wednesday, 12.04.2017 from 12:00 to 14:00, Room: A121, Römerstr. 164. 
 +**<​html></​font></​html>​
 +
 +</​note> ​
 +
 +*/
 +
 +
 +
 +===== Formalities =====
 +
 +  * **Course title**: Seminar Predictive Analytics
 +  * **Course number** in module handbook: **MA 4220** ​
 +  * **Course number** in Basis: 612014220 ​    
 +  * **Hours per week**: 2
 +  * **Credit points**: 4. 
 +  * **Prerequisites**: ​  
 +
 +The seminar is part of the ICM track of the M.Sc. curriculum. ​
 +It is are aimed at students who want to become familiar with predictive analytics. As the target domain, we also consider the domain of software engineering.
 +
 +In this year there will be no subsequent lab related to the seminar topics.
 +
 +
 +===== Predictive Analytics ====
 +
 + ​Increasing complexity of modern software systems and rapid advancements in 
 +data science and analytical techniques has lead to a new paradigm which aims at
 +using predictive techniques and analysis in the development and maintenance
 +of software systems.
 + ​Predictive Analytics (PA) covers different range of analytical, statistical and mining ​
 +techniques that are used to extract data from existing data sets in software systems
 +with different goals in mind. 
 + To name a few, PA techniques are used to predict software development cost/​effort,​ estimate ​
 +the quality of software systems, finding bugs and defected components etc.
 + PA is also used in quantification and prediction of intermediate or final properties of interest ​
 +in the software development process such as social, collaborative and teamwork activities and 
 +related patterns which typically occur in large software projects.
 + ​Modeling the software project evolution based on historical repository data, characterization, ​
 +classification,​ and prediction of software defects based on analysis of software repositories,​
 +finding suitable components and code fragments for reuse, and analysis of change patterns and 
 +trends to assist in future development are other typical activities in this regard.
 +
 + ​Interested in further details? Then attend the info meeting. ​
 + It will introduce necessary background on predictive analytics in software engineering,​
 +present a catalogue of topics for the seminar and clarify organizational issues. ​
 + You will then be able to choose the seminar topic you want to pursue. ​
 +
 +/*
 +<​note> ​
 +
 +<​html><​font color=black></​html>​**
 +The info meeting and presentation of seminar topics will take place at:
 +**<​html></​font></​html>​
 +
 +<​html><​font color=darkred></​html>​**
 +Wednesday, 12.04.2017 from 12:00 to 14:00, Room: A121, Römerstr. 164. 
 +**<​html></​font></​html>​
 +
 +</​note> ​
 +*/
 +
 +/*
 +===== Place and Time =====
 +
 +All seminar presentations will take place in room A121 (Römerstr. 164), on **Thursdays from 
 +10:15 to 11:45**.
 +  * **Presentation skeletons**:​ 8 x (6 minute presentation + 5 minute feedback) = 90 minutes
 +    * 10.05.2017: All 8 topics
 +  * **Draft presentations**:​ 3 x (20 minute presentation + 10 minute feedback) = 90 minutes
 +    * 01.06.2017: Topics 1-3 
 +    * 08.06.2017: Topics 4-6 
 +    * 22.06.2017: Topics 7-8 
 +
 +  * **Final presentations**:​ 2 x (35 minutes presentation + 5 minutes discussion)
 +    * 13.07.2017: 2 Topics: 1. The Evolution of the Laws of Software Evolution, 2. Presentation by Nilesh
 +    * 20.07.2017: 2 Topics: 1. Modeling Software Evolution Defects Using Time Series, 2. Modeling Clones Evolution Through Time Series
 +*/
 +
 +/*
 +<​note>​
 +**All reports** are due on July 31st. Reports must be written in Lyx using {{:​teaching:​seminars:​mdse:​2016:​report_template.zip|this template}}
 +</​note>​
 +
 +*/
 +
 +
 +
  
teaching/seminars/pa/2019/start.txt · Last modified: 2019/03/29 12:22 by Hamed Shariat Yazdi

SEWiki, © 2019