Assisted Software Exploration using Formal Concept Analysis

Paul Heckmann and Daniel Speicher
Institute of Computer Science III,
University of Bonn, Germany
{heckmann, dsp}@cs.uni-bonn.de

Abstract. Program comprehension requires understanding the structures within the program. Some of these structures are created intentionally and well known (design pattern), others arise implicitly but are still meaningful, and finally some structures emerge accidentally without any meaning. We build on a previously suggested approach to mine structures in software using Formal Concept Analysis. In contrast to previous work, we found the performance of our tool to be still acceptable for projects of interesting size (\sim 600 classes). A prominence index for classes based on the formal concepts proved to be helpful for the identification of core structures (high prominence) as well for focusing on specific structures (low prominence). We report about two experiments. In the first the tool guided the experimenter to central structures of JUnit as documented before but unknown by the experimenter. In the second the tool led us to the core structures of our own software.

1 Introduction

An object oriented software system essentially can be seen as a composition of structural concepts. Concepts in which classes and interfaces are connected with each other using building mechanisms like abstraction, inheritance, and composition to realize a certain functionality important to the respective part of the system. Some of these concepts reoccur over the entire project and constitute to a programs unique character, others reoccur yet only in certain parts suggesting core concepts of the program. Hence revealing any of these structural concepts can be a first important step to understanding the software itself, its character and its core functionality. But not all of these concepts arise by design, e.g. by using design patterns as introduced by [6]. They may arise implicitly and strongly depend on the developers style of solving a certain design problem.

In this work we propose an approach to mine structural concepts using a bi-clustering technique called Formal Concept Analysis (FCA) [7], building on a previous approach proposed by [11]. This technique allows us to group structures in source code into meaningful groups without requiring any knowledge on the to-analyze program nor the existence of a reference library of structures. We then improve this approach by the use of a more efficient mining algorithm and extend it by adding filtering features that, on one hand, allows us to interactively and iteratively explore the structures in a program, and on the other hand supports us in finding those structural concepts constituting to its core functionality.
In section 2 we give a brief introduction to the very basic idea of FCA. In section 3 we reproduce the approach firstly introduced by [11] to apply FCA on our problem of mining structures in source code. In section 4 we present our extensions to this approach. Finally, in section 5 we validate the performance improvement on three software projects of different size and conduct two experiments to examine the practicability of our extensions.

2 Formal Concept Analysis

Formal Concept Analysis (FCA) [7][3] is a branch of lattice theory that allows us to identify meaningful groupings of objects G, i.e. quantities in a data set, that have common attributes M. In all the extent of this work, we are going to explain FCA on a very simple yet illustrative example in which we pick a set of birds as G and a set of bird characteristics as M and organize them in a so called formal context \mathcal{M}, as depicted in Table 1. This formal context describes an incidence matrix in which $\mathcal{M}_{(i,j)} = 1$ if object i has attribute j.

Using this context, FCA groups the objects and their attributes into formal concepts, listed in Table 2. Such a formal concept consists of two sets, an extension and an intension. The intension contains all common attributes that apply to the objects in the extension. In the same way all objects contained in the extension share all properties contained in the intension. Therefore a concept is a maximal collection of elements sharing common properties. Adding an attribute to a concept’s intension there would be at least one object in the extension that does not have this attribute. Adding an object to the extension there would be at least one attribute in the intension this object does not have. As a consequence the formal concepts build a complete partial order that can be written as a lattice. Table 2 in some way suggests this order by the increasing number objects and the decreasing number attributes from top to bottom.

\begin{table}[h]
\centering
\begin{tabular}{l|c|c|c|c|c}
\hline
 & can fly & can swim & sings & migratory & monogamous \\
\hline
Ara & \times & & & \times & \\
Bluejay & \times & \times & & \times & \\
Kiwi & & & \times & \\
Mallard & \times & \times & & & \\
Pelican & \times & \times & & & \\
\hline
\end{tabular}
\caption{FCA bird example context.}
\end{table}

\footnote{It needs to be noted that ornithology usually is not part of our research. The data shown in Table 1 may not be entirely correct.}

\footnote{In the context of this particular work, we are not making any use of this partial order.}
Table 2. Formal concepts for the context in Table 1.

<table>
<thead>
<tr>
<th>i</th>
<th>Extension E_{c_i} (↓)</th>
<th>Intension I_{c_i} (↑)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>{Pelican}</td>
<td>{can fly, can swim, migratory}</td>
</tr>
<tr>
<td>c_2</td>
<td>{Bluejay}</td>
<td>{can fly, sings, monogamous}</td>
</tr>
<tr>
<td>c_3</td>
<td>{Ara, Bluejay}</td>
<td>{can fly, monogamous}</td>
</tr>
<tr>
<td>c_4</td>
<td>{Mallard, Pelican}</td>
<td>{can fly, can swim}</td>
</tr>
<tr>
<td>c_5</td>
<td>{Kiwi, Ara, Bluejay}</td>
<td>{monogamous}</td>
</tr>
<tr>
<td>c_6</td>
<td>{Ara, Bluejay, Mallard, Pelican}</td>
<td>{can fly}</td>
</tr>
</tbody>
</table>

3 FCA Application

3.1 Setup of the Formal Context

We apply FCA on an object oriented software system by considering structures between classes and interfaces as the set G of FCA objects and class relationships that constitute to a structure as the set M of FCA attributes. A first logical step hence will be to define a structure model, i.e. the set of types of relationships we are looking for in a system. For this, we adapt relationships from LePUS3 [5], a modeling language for design patterns, and classify them into three structural and four behavioral relationship types, as listed in Table 3. All relationships are orthogonal to each other. For instance, the calls relationship between two classes A and B only applies if there is no forwards relationship between A and B.

Table 3. Our set of relationships used to describe structures in source code.

<table>
<thead>
<tr>
<th>Relationship</th>
<th>A class A is related to a class/interface B by r if</th>
</tr>
</thead>
<tbody>
<tr>
<td>has</td>
<td>A has a one-to-one object association to B.</td>
</tr>
<tr>
<td>aggregates</td>
<td>A has a one-to-many object association to B.</td>
</tr>
<tr>
<td>specializes</td>
<td>A extends or implements B.</td>
</tr>
<tr>
<td>calls</td>
<td>A method in A calls a method in B.</td>
</tr>
<tr>
<td>forwards</td>
<td>A method in A calls a method in B that shares the same signature.</td>
</tr>
<tr>
<td>creates</td>
<td>A method in A calls the constructor of a class and binds the new instance to a variable of type B.</td>
</tr>
<tr>
<td>produces</td>
<td>A non-private method in A creates a new instance of B and returns it.</td>
</tr>
</tbody>
</table>

Using this model to describe structures, we then adopt the FCA approach introduced by [11] and later improved by [1]. Here, having as input the set P of all classes in a software and a fixed order $n \in \mathbb{N}$ we gather those class substructures that contain n classes. Such a substructure can be described by two components, namely its n-tuple of classes in P^n (our FCA object) and a set of relationships between these classes (our FCA attribute). We illustrate this approach by the example structure in Figure 1 with

\[P = \{A, B, C, D, E\} \text{ and } n = 3. \] The corresponding formal context to Figure 1 is shown in Table 4 while Table 5 lists the resulting formal concepts.

\[\]

Figure 1. A simple class structure that could be an input to our FCA approach. It contains five classes related to each other by two of our relationship types, has (simple association, diamond at source) and specification (inheritance, triangle at target).

Table 4. Formal context for the structure in Figure 1 and \(n = 3 \). Four connected substructures can be found. The attributes represent relationships and refer to the classes in the tuples by their indexes. For instance, the attribute \(\text{spec}(2, 1) \) can be read as "the element at index 2 specializes the element at index 1".

<table>
<thead>
<tr>
<th></th>
<th>(\text{spec}(2, 1))</th>
<th>(\text{spec}(3, 1))</th>
<th>(\text{has}(3, 1))</th>
<th>(\text{has}(2, 1))</th>
<th>(\text{spec}(3, 2))</th>
<th>(\text{has}(3, 2))</th>
<th>(\text{has}(1, 3))</th>
<th>(\text{has}(1, 2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((A, B, C))</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((A, B, D))</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\times)</td>
</tr>
<tr>
<td>((A, C, D))</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((A, D, E))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\times)</td>
</tr>
</tbody>
</table>

Table 5. Formal concepts for the context in Table 4.

<table>
<thead>
<tr>
<th>(i)</th>
<th>Extension (E_i) (↓)</th>
<th>Intension (I_i) (↑)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>({A, D, E})</td>
<td>({\text{has}(1, 2), \text{has}(3, 2), \text{spec}(3, 2), \text{has}(2, 1)})</td>
</tr>
<tr>
<td>(c_2)</td>
<td>({A, C, D})</td>
<td>({\text{has}(3, 1), \text{has}(2, 1), \text{spec}(2, 1), \text{has}(1, 3)})</td>
</tr>
<tr>
<td>(c_3)</td>
<td>({A, B, C})</td>
<td>({\text{spec}(3, 1), \text{has}(3, 1), \text{spec}(2, 1)})</td>
</tr>
<tr>
<td>(c_4)</td>
<td>({A, B, D), (A, C, D)})</td>
<td>({\text{has}(1, 3), \text{has}(3, 1), \text{spec}(2, 1)})</td>
</tr>
<tr>
<td>(c_5)</td>
<td>({A, D, E), (A, C, D)})</td>
<td>({\text{has}(1, 2)})</td>
</tr>
<tr>
<td>(c_6)</td>
<td>({A, B, D), (A, C, D), (A, B, C)})</td>
<td>({\text{spec}(2, 1), \text{has}(3, 1)})</td>
</tr>
</tbody>
</table>

3.2 Iterative Concept Analysis

FCA generally is expensive. Its runtime increases exponentially by the set of objects, the set of attributes and the density of the formal context. In order to reduce the set of concepts computed by FCA as well as its expected runtime, we apply FCA iteratively. In the first iteration, only the three structural relationships in Table 3 are considered,
creating concepts revealing the definition of a system part. In case we want to further examine such a definition in its behavior, we apply FCA only on this part a second time also considering our behavioral relationships but vastly reducing the set of FCA objects.3

3.3 Postprocessing

Removing Disconnected Structures Due to the way we construct the formal context basically two post-processing steps have to be taken. The first one is to remove concepts whose intension describe a disconnected graph. In Table 5 concept c_5 represents such a graph, as the nodes with the indexes 1 and 2 are connected with each other, the node with index 3 is not connected to any of the other two.

Merging Equivalent Structures For a context like ours FCA may produce concepts that are basically equivalent and can be merged. That is the case if there exists a permutation of the indexes of two concepts such that the intension of one concept can be mapped into the other. For instance, in Table 5 concept c_1 is equivalent to c_2 by the mapping $1 \rightarrow 3$, $2 \rightarrow 1$ and $3 \rightarrow 2$. To find such a mapping is a graph matching problem and hence not trivial. We used the VF2 algorithm proposed by [4] to accomplish this task, however, since the graphs we are trying to match are relatively small a naive depth-first search would work just as well.

Removing Redundant Information As an additional step we remove those concepts that contain redundant information. This is the case if the structure the concept describes contains a symmetric subgraph. A prominent example is the ”star pattern” as depicted in Figure 2 (a). Here we can reduce the pattern to the one in Figure 2 (b) without losing any information. Since the reduced concepts represent structures of a lower order, we can ignore them.

Fig. 2. A ”star pattern” containing redundant information (a) and its reduction (b).

3 The idea was already proposed by [11], with the difference that they used as attribute augmentation the methods calling each other and their names.
4 Filtering Features

4.1 Corner Elements

In order to dynamically change the space FCA is applied on we define the term Corner Element. When gathering all substructures of given order in the setup of the formal context we proceed inductively, i.e. first compute all structures of order \(n = 2 \), then augment them to structures of order \(n = 3 \), etc.. Before starting an analysis run we can declare classes as corner elements and aggregate them in a list. It is then guaranteed that in the first inductive step each structure of order \(n = 2 \) consists of at least one element from the corner element list. As a consequence, the structures serving as FCA objects then are the union of all structures that evolve around the classes in our list of corner elements.

4.2 Class Prominence

Taking a look at the extension of a formal concept we gain interesting information on single classes. One of such is the prominence of a class. For the extension \(E_c \subset P^n \) of a formal concept \(c \) we can consider an index \(r \in \{1, \ldots, n\} \) of the \(n \)-tuples in \(E_c \) as a role of concept \(c \). A class \(p \in P \) in any of the \(n \)-tuples in \(G_c \) at the index \(r \) then can be seen as a role player of role \(r \). The set of all role players for a role \(r \) in a concept \(c \) we further refer to as \(P_{c,r} \). In Table 5, concept \(c_6 \), we have three roles\(^4\) according to their indexes in the 3-tuples, played by the following classes: \(P_{c_6,1} = \{A\} \), \(P_{c_6,2} = \{B, C\} \), \(P_{c_6,3} = \{D, C\} \).

Given a class \(p \in P \) and a role \(r \) in a concept \(c \), we define its prominence \(u(p, r, c) \) (3) in \(r \) simply as the scaled frequency \(\eta(p, r, c) \) (1) (2) of the class playing this role multiplied by the size of \(E_c \).

\[
\eta(p, r, c) = \frac{|\{e \in E_c \mid e_r = p\}|}{|E_c|}
\]

\[
\phi(x) = \frac{x}{1-x}
\]

\[
u(p, r, c) = \phi(\eta(p, r, c)) \cdot |E_c|
\]

In a final step we compute the absolute prominence \(u(p) \) (4) of a class \(p \) simply by summing up the prominence values for a class over all roles over all concepts and normalize the outcome over the absolute prominences of all classes.

\[
u(p) = \sum_{c,r} u(p, r, c)
\]

Throughout the concepts listed in Table 5, apparently the class A is more prominent than any of the other four classes. Pretending that we replace class A with another class X in concepts \(c_1-c_3 \), class A would still gain the highest prominence value as it is the only player of role \(r = 1 \) in concepts \(c_4-c_6 \), which all have a larger extension.

\(^4\) The number roles is determined by the order \(n \).
The prominence of a class can serve us in two ways: First, the more prominent a class the higher the probability that it plays a role in a core concept of a software project. One can see the prominence as a gravitation of a class. The higher, the greater is the part of a software project that is ‘attached’ to this class. Second, it could help us determining appropriate corner elements as filters. The lower the prominence of a class, the smaller the expected number computed concepts.

5 Case Studies

5.1 Our Tool

We implemented our approach as part of the Cultivate\(^5\) plugin for the Eclipse\(^6\) IDE. Cultivate is a code analysis tool for Java programs. It in turn bases on the JTransformer\(^7\) plugin which provides a Prolog factbase that represents the full abstract syntax tree of the to-analyze Java program. Cultivate implements several program analyses written in Prolog that are applied on this factbase.

To compute the formal concepts we use a relatively young algorithm proposed by [9]. This algorithm is particularly suitable to our approach compared to the algorithm [7] used by previous works because it saves time not carrying the hierarchical order of the concepts required to build the concept lattice. Due to our post-processing reorganizing the computed concepts this additional information is useless to us anyway. Secondly, this algorithm allows us to parallelize the computation, distributing the computational load over several CPUs.

5.2 Data Set

We apply our tool on three different Java projects:

- **JUnit\(^8\)** 4.7, which is a testing framework for Java code of smaller size.
- **Cultivate**, the framework our tool is based on. It consists of a platform providing utility classes and the engine on one hand and several addons on the other hand that build upon this platform but not upon each other. As a consequence the overall cohesion in this project is very low. Also we are familiar with its domain, which makes it easier to evaluate our findings.
- **JHotDraw\(^9\)** 7, a free Java-based framework for creating graphical editors. In contrast to Cultivate we are not familiar with this project, yet enjoy it to be well documented. Also the overall cohesion of the project compared to Cultivate is fairly high.

For the sake of simplicity we consider only the set of core classes (ignoring external library classes) that fulfill the following requirements: The class neither is of a basic type (*Integer, Double, ...*), an enumeration type nor an anonymous class.

\(^5\) http://sewiki.iai.uni-bonn.de/research/cultivate/start
\(^7\) http://sewiki.iai.uni-bonn.de/research/jtransformer/start
\(^8\) http://www.junit.org
\(^9\) http://sourceforge.net/projects/jhotdraw
5.3 Performance

We ran our analyses on an Intel Quad Core @2.83 GHz with 4 GB RAM under normal load. Table 6 shows the runtime behavior we observed and number concepts computed for each of the three sample projects and with regard to the order \(n \). For \(n \geq 5 \) on Cultivate our tool failed due to lack of memory. This may or may not be caused by Prolog and the fact it loads the entire factbase into the main memory as well as it caches its query results. The reason why the analysis on JHotDraw is faster than on Cultivate for \(n > 3 \) we ascribe to Cultivate being way less cohesive than JHotDraw, which eventually leads to a faster growth of concepts in \(n \). Yet the actual number concepts in both projects are insignificantly different what suggests a fairly large impact of our additional post-processing.

Recalling previous observations made by [1], using the Ganter algorithm [7] the analysis of a sample project written in Smalltalk with 167 classes and \(n = 4 \) took approx. two days.\(^{10}\) Compared to this, our own results by far excel our expectations and prove this technique to be a time-efficient way to analyze software projects even of larger scale.

<table>
<thead>
<tr>
<th>#classes</th>
<th>JUnit 4.7</th>
<th>Cultivate</th>
<th>JHotDraw 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>runtime</td>
<td>concepts</td>
<td>runtime</td>
</tr>
<tr>
<td>(n = 2)</td>
<td>(<1s)</td>
<td>5</td>
<td>(~2s)</td>
</tr>
<tr>
<td>(n = 3)</td>
<td>(<1s)</td>
<td>16</td>
<td>(~3s)</td>
</tr>
<tr>
<td>(n = 4)</td>
<td>(~1s)</td>
<td>24</td>
<td>187s</td>
</tr>
</tbody>
</table>

6 Example Applications

6.1 Experiment 1: JUnit

In a first experiment we pick the smaller of our sample projects, JUnit, and let one of the authors apply our tool on it with the goal to yield most relevant structures of the project in at most five analysis steps. The project is well-documented and makes extended use of design patterns, however, the experimenter neither is familiar with the project nor with its documentation at the time of execution.

As a first step, the experimenter runs an analysis on structures of order \(n = 2 \). Despite our expectations we found \(n = 2 \) particularly instructive, as its corresponding concepts are small in number, easy to understand and most often already reveal those atomic relationships between two classes larger patterns are only based on. The analysis computes five concepts of which the one depicted in Figure 3 (a) catches the experimenters.

\(^{10}\) A less advanced hardware may have an impact on these stats, too, considering the previous observations date back eight years.
attention as it is one of two with more than one relationship. This pattern suggests the implementation of a tree structure using the Composite pattern [6]. In order to check this presumption the experimenter runs an analysis on order \(n = 3 \) using the class TestSuite as a corner element. Since this class has a significantly smaller prominence than Test, it is more suitable as a filter. Two concepts are computed, one of them actually representing the Composite pattern as depicted in Figure 3 (b).

As a specification of Test we find a class called TestDecorator in Figure 3 (b) which suggests the implementation of the Decorator pattern [6]. Following the same procedure as before (using TestDecorator as corner element) we can verify our presumption.

![Diagram](image)

Fig. 3. Composite pattern candidate (a) and verified instance (b) in JUnit 4.7.

Rechecking our findings so far with the JUnit documentation we can verify the composite pattern instance as one most relevant to the base framework, while the decorator pattern instance is particularly important to the extensional part which can be used by developers to implement and plug in custom test definitions.

6.2 Experiment 2: Cultivate

In a second experiment we wanted to examine the precision of the prominence calculation and how it can be exploited to find core concepts in a software project. For this, we use our own project, Cultivate. Firstly, because we are familiar with it and can assess the validity of the computed prominence values. Secondly, Cultivate basically is a platform with a few core classes that, however, are extensively used by the add-ons that build on the platform.

We run an analysis on structures of order \(n = 3 \) and retrieve the list of all occurring classes ranked by their prominence. The one with the highest prominence value is CultivateViewPart (~12%), the next-prominent class is BaseQuery (~3%). In both cases we agree with the tool: CultivateViewPart is a class used as an abstract view part that follows selections in the workbench and manages the subscription of analyses on the corresponding software projects. It is basically inherited from all add-on projects that provide a workbench view and in fact is one of the central classes...
in Cultivate. `BaseQuery` is the abstract class to query analyses on Prolog side, specialized by 63 different classes inside the add-on parts. We declare `CultivateViewPart` as corner element and run the analysis again. The result is a set of 14 concepts of which two describe exactly the main responsibilities of this class, depicted in Figure 4.

![Diagram](image)

Fig. 4. Two core concepts of the Cultivate project. In Figure (a) the `CultivateViewPart` creates and attaches to a `ConfigurationQueriesModel` object which then retrieves a `Repository` for the currently selected project and handles query subscriptions on that repository. (b) describes an **Observer** pattern [6], in which `CultivateViewPart` is an observer, `JavaSelectionService` handles workbench selections.

7 Discussion

We can see that FCA is a practical approach to mining structures in software projects even of larger size. By not only considering the intension of each concept but also its extension, we find a promising approach to assess the relevance and importance of certain classes of the software project. Having such an assessment we can exploit it either as a clue to search and identify core concepts of the corresponding project or as an assistance in choosing appropriate filter elements to narrow down the space the analysis is applied on.

A very interesting observation we made during our studies on this technique is the importance of structures of order $n = 2$. They are in many cases atomic components of structural concepts such as design patterns that represent the core relationship the pattern is based on. For instance, in the first experiment we started with the five structures of order $n = 2$ and could easily detect a composite and a decorator pattern (as described in 6.2) as well as *Facade* and a *Chain Of Responsibility* pattern [6].

Yet we think the overall number concepts computed with regard to the order n and the size of our relationship model is too high to be convenient. On the other hand, reducing the set of relationships as FCA attributes lead to more abstract concepts, requiring the user to more often investigate the source code in order to understand the context of a concept. During our studies on this approach we found ourselves gaining preferences
on patterns over others, suggesting there can be defined heuristics about patterns being interesting and hence relevant or not. Given such heuristics one can impose further structural constraints to extend the post-filtering.

8 Related Work

Formal Concept Analysis (FCA) was firstly proposed by [7] as a branch of lattice theory. The first effort towards structure mining in source code using FCA was achieved by [11]. Their approach then was later refined by [1] who reduced the number FCA objects and hence improved the overall runtime. Further structure mining efforts for object-oriented systems have been achieved by [12][8][2] who used subgraph matching to group same structures formed by classes. We adopted the approach by [11] refined by [1], enhanced the set of FCA attributes, i.e. class relationships, using a set of relationships based on the modeling language LePUS3 by [5] and exchanged the previously used algorithm to compute formal concepts by a relatively young algorithm that was proposed by [9].

A slight connection to our findings of the importance of order 2 structures can be drawn to [10], who tried to decompose design patterns into their elemental parts.

References